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Abstract
An emerging consensus among policy makers is
that interventions undertaken by Internet Service
Providers are the best way to counter the rising inci-
dence of malware. However, assessing the suitability
of countermeasures at this scale is hard. In this
paper, we use an agent-based model, called ASIM,
to investigate the impact of policy interventions
at the Autonomous System level of the Internet.
For instance, we find that coordinated intervention
by the 0.2%-biggest ASes is more effective than
uncoordinated efforts adopted by 30% of all ASes.
Furthermore, countermeasures that block malicious
transit traffic appear more effective than ones that
block outgoing traffic. The model allows us to quan-
tify and compare positive externalities created by
different countermeasures. Our results give an initial
indication of the types and levels of intervention that
are most cost-effective at large scale.

1 Introduction
Many Internet-connected computers are infected with
malicious software, or malware. Malware can harm
the infected computer user directly, for example, by
installing a keystroke logger to collect confidential
information surreptitiously. It can also place the
machine into a botnet consisting of thousands or
even millions of computers that carry out attacks of
the operator’s choosing, such as sending email spam
or launching denial-of-service attacks. Infected ma-
chines can also become vectors for further malware
spread, as in the case of Conficker, which initiates
attacks from infected machines to recruit new com-
puters to the botnet [28].

In economic terms, malware imposes negative ex-
ternalities by harming innocent third parties [3]. Neg-

ative externalities are a form of market failure, which
suggests that there will be an oversupply of the re-
source (in this case, malware) in equilibrium. Policy
makers are interested in correcting this market fail-
ure to reduce the social cost of malware. Although
many stakeholders could potentially help control the
spread of malware, the emerging consensus is that
Internet Service Providers (ISPs) are best positioned
to intervene [24, 2, 33].

It is less clear, however, what kind of intervention
is most appropriate. The possibilities range from sim-
ply notifying infected customers to actively quaran-
tining them until the malware has been demonstra-
bly removed. It is difficult to gauge the impact of
policies and ISP-level interventions until they have
been tried, and it is expensive (both financially and
in terms of political capital) to adopt industry-wide
policies. Consequently, it is important to get it right
the first time.

One way to address this issue is through model-
ing. In this paper we model potential intervention
strategies for controlling malware and compare their
likely impact. We use an agent-based model called
ASIM [17], which represents the Internet at the au-
tonomous system (AS) level, the level at which policy
interventions are being actively considered. ASIM in-
corporates traffic, which is key to understanding the
spread of malware, geography, which is key to inves-
tigating country-level effects, and economics, which
is is key to understanding the cost and benefits of
interventions.

Through a series of experiments we study several
questions, reporting some findings that are unsurpris-
ing and others that are counterintuitive. For exam-
ple, our experiments show, as we would expect, that
a few of the largest ISPs acting in concert are more
effective than a randomly chosen subset of all ASes
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intervening unilaterally. However, the numbers in-
volved are more surprising: Intervention by the top
0.2% of ASes is more effective than intervention by
30% of ASes chosen at random. Our results also sug-
gest that when only the largest ASes intervene, it
is better to simply filter out malicious traffic (espe-
cially transit traffic) than to attempt to remediate
end-user infections. We also explore briefly the im-
pact of interventions on the growth of the network,
and demonstrate that policies that are beneficial in
the short term could be harmful in the long-term.
For example, the collateral damage caused by black-
listing malicious traffic sources promotes those ASes
that profit from receiving more malicious traffic.

The remainder of the paper is structured as follows.
We review in greater detail the policy interventions
currently under consideration worldwide in Section 2.
In Section 3, we explain how ASIM works and how
the cybersecurity interventions are implemented. In
Section 4 we describe how we empirically validated
ASIM, and Section 5 reports experimental results.
We discuss related work in Section 6 and the findings
and limitations in Section 7. Finally, we conclude in
Section 8.

2 Policy Interventions
There are several reasons why ISPs are a promis-
ing point of intervention. First, ISPs are the gate-
keeper to the Internet for many computers and
thus in a unique position to inspect traffic to and
from their customers. Infections are often detected
remotely by scanning for outgoing connections to
known command-and-control servers used by botnet
operators [21]. In this scenario, only the ISP can link
an IP address to customer details, a crucial step if
customers are to be notified and assisted.

A second reason is that ample opportunity exists
for reducing the prevalence of malware by enlist-
ing the help of ISPs. Using several years’ worth of
data on computers sending spam (a natural proxy
for botnet activity), van Eeten et al. [33] found that
most compromised computers were customers of le-
gitimate ISPs, and that infection rates vary dramat-
ically across ISPs and countries. Their evidence sug-
gests that differences in security countermeasures,
not merely target selection by attackers, can affect
infection rates at ISPs.

However, incentives for ISPs to implement secu-
rity countermeasures are weak. As mentioned above,
much of the harm caused by malware is externalized,
but the cost of intervention would fall largely on the

ISP. Although the infected host is often unharmed by
malware, the ISP is definitely not directly harmed.
However, the cost of notification and cleanup can
be substantial. According to an OECD study, one
medium-sized ISP reported that it spent 1–2 % of
its total revenue handling security-related support
calls [32]. Thus, there is a strong disincentive for
ISPs to notify infected customers and also pay for
any resulting support calls.

Despite weak incentives, ISPs in many countries
have begun exploring a variety of remedial interven-
tions, either with government cooperation or to pre-
empt the imposition of more burdensome regulatory
requirements. Interventions by ISPs usually do not
include the detection of malware, only remediation
once malware is detected. For notifications of misbe-
having or compromised customers, ISPs rely on third
parties, such as the operators of email blacklists, bot-
net trackers, other ISPs and security companies,

Once a threat is identified, most ISPs choose to
do nothing, waiting until the abuse team has time
to act or for additional warnings about the customer
to accrue. However, some ISPs have begun to no-
tify customers. In the US, Comcast automatically
notifies customers of infections with a browser pop-
up that links to instructions for removing the mal-
ware [10]. The customers are responsible for com-
pleting the clean-up process, and it is inevitable that
not all malware will be removed successfully even
after notification. As a further step, Comcast has
partnered with Symantec to offer remediation by a
skilled technician for $100. A similar approach is be-
ing rolled out by Australian ISPs [6].

A more aggressive step is to place infected comput-
ers into “quarantine.” Once in quarantine, users are
required to download and install anti-virus software
and malware removal tools. They leave the quar-
antine only after the security software is installed
and the computer passes a network-based scan for
malware. Quarantine is considerably more expen-
sive than the notification-only approaches, and the
the ISPs that use them do so only for a minority
of affected customers. Recently, the Dutch ISPs an-
nounced a signed agreement to notify and quarantine
affected customers [13].

Both ISPs and policy makers have realized that
tackling widespread infection can be made more ef-
fective if ISPs coordinate their interventions. In
both the Dutch and Australian case, many ISPs have
joined together in common action, prodded by their
governments. This collective action is designed in
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part to allay the fear that customers might switch
providers rather than fix the underlying problem.

Some countries are weighing more active interven-
tion. If the cost of customer support is really the
greatest impediment to ISP action, then the Ger-
man government’s decision to establish and subsidize
a nationwide call center could really help [18]. Un-
der this plan, ISPs will identify infected customers
and pass along the information to the call center.
Clayton describes a proposal under consideration
by Luxembourg to subsidize the cost of voluntary
cleanup whenever a customer has been notified of in-
fection [9]. Instead of such “carrot”-based incentives,
“sticks” could also be tried. Anderson et al. rec-
ommended that the European Commission introduce
fixed penalties for ISPs that do not expeditiously
comply with notifications of compromised machines
present on their networks [2].

Finally, policy makers could coordinate their de-
fenses by aggregating notifications of infection. A sur-
vey of Dutch ISPs revealed that they notify or quar-
antine only about 10% of infected customers [31] even
though they claim to notify all customers known to
be infected. This occurs because their individual lists
of infections are incomplete. Data incompleteness is
a widespread problem in information security [23], as
firms often jealously guard their incident information
as trade secrets. To combat this trend, the Australian
Internet Security Initiative now aggregates data on
compromised machines into a single feed and passes
it along to Australian ISPs [6].

3 Model Description
ASIM [17] is an agent-based model of Internet growth
at the Autonomous System (AS) level. ASes roughly
correspond to ISPs. While there are differences be-
tween ASes and ISPs (e.g., a single ISP can use sev-
eral AS numbers), more extensive and reliable data is
available describing ASes than ISPs. This eases em-
pirical validation and explains why most of the liter-
ature has studied Internet topology at the AS level.
We summarize the important features of ASIM here,
highlighting differences between the original imple-
mentation and the version used in this paper.

ASIM is based on highly simplified implementa-
tions of four key features of ASes: network structure,
traffic flow, geography, and economics. These fea-
tures are sufficient to enable ASIM to generate net-
works with topologies, dynamics, and spatial distri-
butions similar to those of the Internet. There are
conceptual similarities between ASIM and some ear-

lier Internet models such as HOT [8, 7], although
many of the details are different. For example, ASIM
adds explicit economic considerations and accounts
directly for population density.

ASIM attempts to reproduce large-scale features
of the AS level of the Internet by modeling localized
and well-understood network interactions. Instead
of simply reproducing a macroscopic pattern using
statistical fitting or phenomenological models, ASIM
specifies a set of primitive components (the agents)
and interaction rules that mimic the architecture of
the real system. The model is run as a simulation,
and macroscopic behaviors (e.g., degree distribution)
are observed and compared to real-world data. The
objective is to provide a parsimonious explanation of
how a system works by hypothesizing a small set of
simple but relevant mechanisms.

In ASIM each AS is an economic agent, which man-
ages traffic over a geographically extended network
(referred to as a sub-network to distinguish it from
the network of ASes) and profits from the traffic that
flows through its network. We assume a network user
population distributed over a two-dimensional grid
of locations. Traffic is generated between source and
destination with a probability that is a function of the
population profile. The model is initialized with one
agent that spans one grid location. At each time step
a new agent is added to a single location. As time
progresses, each agent may extend its sub-network
to other locations, so that the sub-networks reach a
larger fraction of the population. This creates more
traffic, which generates profit, which is then rein-
vested into further network expansion. In addition,
agents link to each other, potentially routing traffic
between sub-networks other than their own. A nec-
essary, but not sufficient, condition for two agents to
be connected is that they overlap in at least one loca-
tion. Through positive feedback, the network grows
until it covers the entire population.

For this paper, we have reimplemented ASIM in
order to make it run efficiently in parallel.1 In the
process, we have simplified the model, without re-
ducing the accuracy with which the model simulates
AS-like networks. The major changes are described
below.

3.1 Simplifying the Original ASIM
In the original model described in Holme et al. [17],
a variable number of agents could be added every
time step, sufficient to maintain the correct average

1Code available at http://ftg.lbl.gov/projects/asim.
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degree. In the new model, we simply add one agent
per iteration, regardless. This follows realistic ob-
served growth curves where the number of new agents
grows at an almost perfectly linear rate. In our anal-
ysis of the real world data, we find that about 5.5
new ASes are added per day, so in our simulation,
one time step is the equivalent of approximately 4.4
hours. Each new agent is added to a single, already
occupied location2, chosen at random (weighted ac-
cording to population).

Instead of a packet-switched model, we use the
gravity model [16]. For the gravity model, the traffic
flow T between a pair of agents A and B is

T (A,B) =
pop(A)pop(B)

d(A,B)2

where, pop(A) is the population served by A, pop(X)
is the population served by B, and d(A,B) is the
shortest path distance on the AS graph from A to
B. Once we have determined the flow between A and
B, we propagate it across the graph on the shortest
path and every agent along that path gets its count
of traffic increased accordingly. If there are multiple
shortest paths, we randomly choose one. This traf-
fic flow computation is performed for every pair of
agents.

The traffic model is run every 16 time steps, cor-
responding to every three days of simulation time.
Computing paths and carrying out traffic flow is ex-
pensive and most paths do not change significantly
in the short term. We find experimentally that run-
ning the traffic model every 16 time steps provides
a good balance between computational overhead and
maintaining accuracy. Note that there is no notion
of capacity, as there was in the original model.

There are two major differences in the modeling of
geography. First, we disregard geographic distance,
i.e. the cost of expanding to a new location is con-
stant, regardless of where an agent expands to. By
contrast, in the original model, the greater the dis-
tance from an agent’s existing locations to a new lo-
cation, the higher the cost of expansion. Second, in
the new ASIM, an agent expands to a randomly cho-
sen location, weighted by populace, regardless of how
many other agents exist at that location. This dif-
fers from the original model, where the location cho-
sen was the one with the highest shared3 population
within reach.

2Except for the very first agent, of course.
3The population of the location, divided by the number of

agents with presence at that location.

The mechanism for earning revenue in the new im-
plementation is very similar to the original model. In
the original model, an agent earns money for every
packet it transits. In the new ASIM, we do not have a
packet-switched model, and so an agent simply earns
money every iteration proportional to the volume of
traffic that it transits in either direction.

It does not cost an agent to link, unlike in the origi-
nal model. There are two circumstances in which new
links are added. First, when a new agent is placed at
a location, it is linked to an agent that is chosen uni-
formly at random from those already at that location.
This ensures the graph remains connected. Second,
as in the original model, a number of links is added
on every iteration, sufficient to maintain the desired
average degree. In this case, when a link is added, the
source is chosen uniformly at random from all agents,
and the destination is chosen by first choosing an oc-
cupied location (weighted according to population),
and then selecting uniformly at random one of the
agents at that location. If the source does not exist
at that location, it expands to that location. This
ensures that agents can only link if they share a lo-
cation, as in the original model.

3.2 Adding Cybersecurity to ASIM
We use ASIM to compare the effectiveness of differ-
ent policy interventions that counter the proliferation
of malware infections. For simplicity, we assume that
every AS can implement interventions, i.e. we do not
focus on ISPs alone. We define insecurity by assign-
ing a wickedness rate to each AS: the fraction of ma-
chines that are infected with malware. Depending on
its size, each AS has a corresponding wickedness level:
the absolute number of infected machines. Sometimes
we will simply refer to wickedness as an abbreviation
of wickedness level. We define the wickedness rate wi

for each AS i according to the exponential distribu-
tion:

wi = min(−w ln(1− ri)), 0.5)

where ri is a value selected uniformly at random from
the interval [0, 1], and w is the average wickedness. In
Section 4 we explain why this distribution is a rea-
sonable match to observed empirical measurements
of wickedness.

In ASIM, the wicked traffic that flows from a source
AS A to a destination AS B is directly proportional to
the wickedness level at A. We define the wicked traffic
rate at B as the fraction of all traffic destined for end
users at B that is wicked. Hence we do not count
transit traffic when measuring wickedness, although
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wicked traffic is passed through the network. We are
only interested in the impact of wicked traffic on end
users, and so are only concerned with the volume of
traffic that reaches the destination.

We model five types of interventions that can be
undertaken by each AS:

1. Do nothing: This is the baseline where the AS
makes no active intervention.

2. Reduce egress wickedness: This captures a
range of AS interventions that remediate cus-
tomer infections. The percentage reduction of
wicked egress traffic depends on the aggressive-
ness of the intervention—automated notifica-
tions are less successful than quarantine, etc.

3. Reduce ingress wickedness: An AS can de-
ploy filters that drop some portion of incoming
wicked traffic. The proportion dropped depends
on the effectiveness of wicked traffic detection,
the capacity of filtering on the routers, and other
factors. Ingress filtering can be applied to both
end-user traffic and transit traffic.

4. Reduce egress and ingress wickedness: An
AS can deploy methods 2 and 3 simultaneously.

5. Blacklist wicked traffic sources: An AS can
drop all traffic originating from known wicked
sources, typically dropping all traffic that comes
from another AS that is known to have high
infection rates. Hence there is collateral dam-
age because legitimate as well as wicked traf-
fic is dropped. We model this by having an
AS drop all traffic (both wicked and legitimate)
from other ASes with sufficiently high wicked-
ness rates. We also model the notion of an AS
being too big to block, i.e. an AS will only black-
list smaller ASes because blacklisting large ASes
is expected to result in an excessive loss of legit-
imate traffic.

Another intervention under consideration by policy
makers is increased data sharing, where an AS learns
about infections from an amalgamation of sources.
We do not treat data sharing as a separate interven-
tion in the model; rather, we can observe the effect of
increased data sharing by increasing the effectiveness
of ingress and egress interventions.

Separately, we model which ASes choose to inter-
vene as follows:

1. Unilateral: Some ASes choose to intervene uni-
laterally, and there is no coordination between
ASes or regulatory pressure on a particular sub-
set of ASes to intervene. We implement this by

randomly selecting a subset of ASes to adopt in-
tervention strategies.

2. Large ASes act in concert: A selection of
large ASes together adopt one of the AS-level
interventions. There are several variations on
this:

(a) Global coordination: All the largest ASes
adopt one of the AS-level interventions.

(b) Country-specific coordination: All of the
largest ASes in one country adopt one of
the AS-level interventions. We implement
this in the model by randomly selecting a
fraction of the largest ASes to apply inter-
ventions.

(c) Small AS inclusion: Smaller ASes also
adopt the interventions.

4 Validating the Model
The original ASIM [17] was validated on real world
data and shown to be a close match on a number
of metrics. That work dates from 2006, so we have
collected more recent data to perform more exten-
sive validation of the new ASIM. First, we gathered
data on the real topology of the AS graph using the
standard method of inferring links from BGP dumps,
which we collected from the RouteViews4 and RIPE5

databases. These data were used to validate ASIM
on 12 different graph-based metrics; the results are
too extensive to include in this paper.6

Second, we gathered data on the distributions of
locations among ASes in the real world by matching
geoip information from MaxMind7 with the IP pre-
fixes of ASes collected from the BGP dumps. We used
this data to confirm that the characteristics of the ge-
ographical distribution of agents in ASIM correspond
closely with the real Internet. We also used Max-
Mind to gather population data for cities matched
to locations inferred from the geoip data. We could
thus confirm that the characteristics of the popula-
tion distribution in ASIM closely follow that in the
real world.

Obtaining data to validate the cybersecurity ex-
tensions to ASIM is a more challenging task. Reli-
able data are difficult to find for the most important
quantity: the distribution of wickedness rates over
the ASes. Perhaps the best data comes from a study

4www.routeviews.org
5www.ripe.net
6Data and tools available at http://ftg.lbl.gov/

projects/asim.
7www.maxmind.com
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by Van Eeten et al. [31] of botnet activity at Dutch
ISPs. The authors aggregate data on IP addresses ob-
served to be sending email spam, participating in the
Conficker botnet, or appearing in the logs of intru-
sion detection systems for suspected attack behavior.
They found that between 2% and 7% of the customers
of the nine largest Dutch ISPs were infected and ex-
hibiting botnet activity.

Van Eeten et al. also collected similar data on
global Internet activity, finding that Dutch ISPs ex-
perience slightly lower than average rates, with the
worst-performing countries experiencing a rate sev-
eral times higher than that of of the Dutch ISPs.
However, the authors do not report rates for other
countries, because some countries make more exten-
sive use of DHCP than the Netherlands, which could
lead to overestimates. To incorporate the potential
for higher rates, for our experiments we selected an
average wickedness rate w = 0.1, slightly higher than
the highest Dutch ISP value.

Although we can derive the average wickedness
rate from the Dutch data, we are also interested in
how wickedness is distributed across ISPs. To that
end, we collected per ISP data from two sources
of malicious activities. First, we collected data
from maliciousnetworks.org, where academic re-
searchers have constructed a system that tallies the
level of malicious activity at each AS [30]. They
aggregate reports of botnet, phishing and malware
servers observed at each AS. Second, we analyzed a
single-day snapshot from the SANS Internet Storm
Center, which publishes a list of over 1 million IP
addresses exhibiting attack behavior 8. We then de-
termined the AS associated with each IP address in
the SANS list and tallied the total number of IP ad-
dresses observed at each AS to arrive at measures of
wickedness levels for the ASes. Note that in both of
these cases, we can determine only wickedness levels,
not rates, because the number of customers served by
each AS is not publicized.

Figure 1 plots the complementary cumulative dis-
tribution function (CCDF) of wickedness levels ob-
tained from maliciousnetworks.org, the Internet
Storm Center, and ASIM. We can see that our use
of an exponential distribution for the wickedness lev-
els in ASIM results in a simulated CCDF that falls
between the two empirical data sets. From this, we
conclude that the method used in ASIM for generat-
ing wickedness rates for ASes is reasonable.

Even less data are available to evaluate the effec-

8http://isc.sans.edu/feeds/daily_sources

Figure 1: Distribution of wickedness levels generated by
ASIM and in two real world data sets. (Normalized)

tiveness of the different policy interventions described
in Section 2. To our knowledge, the only data on in-
terventions comes from the same Dutch study men-
tioned above [31]. The authors surveyed ISPs about
how often they notified or quarantined customers in-
fected with malware, and then compared this to their
own measurements of wickedness levels. They found
that ISPs notified between 1% and 50% of infected
customers, and that around 20-25% of this number
were also placed into quarantine. As a baseline, in
ASIM we assume that standard intervention reduces
wicked traffic by 20%, although in Section 5, we also
explore the impact of varying the remediation effi-
cacy. We place the different intervention techniques
on a continuum: notification is less effective than
quarantine, and both can be substantially improved
by sharing notifications.

5 Experimental Results
We carried out a number of experiments to explore
the impact of the various cybersecurity interventions
modeled in ASIM. First, in Section 5.1, we investi-
gate the simulation at a single point in time, and
second, in Section 5.2 we study the simulation as
the network evolves. In both cases, we measure
the impact of an intervention as the percentage by
which it reduces the wicked traffic rate (as defined
in Section 3.2) compared to when no intervention is
adopted. When interventions occur, they filter out
20% of wicked traffic, except for blacklisting, where
all traffic from a blacklisted AS is dropped, both le-
gitimate and wicked. For all experiments, we used
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Figure 2: The change over time of the complementary cu-
mulative distribution (CCDF) for the average path length
between every pair of ASes in the real Internet.

the default parameter settings for ASIM V0.3.9

5.1 Impact at a Single Instant
For our study of the effect of interventions at a sin-
gle point in time, we used ASIM to grow a network of
10 000 ASes, and used that network as the basis for all
experiments. For each intervention, we started with
the same 10 000 AS network, set the parameters ap-
propriately, and ran ASIM for a single time step. The
traffic component of ASIM always updates at the end
of a run, so this yields a single update of the traffic
patterns, changed according to the intervention, and
always starting from the same state.

We used 10 000 ASes, rather than the current ap-
proximately 34 000 in the real Internet,10 to reduce
the running time of the simulation. This should have
no substantive impact on the experimental results be-
cause the key characteristics of the AS-level graph
do not change significantly as the network grows, ei-
ther in our simulations or in reality. For example,
Figure 2 shows that the distribution of average path
lengths has remained roughly unchanged over the last
decade, even as the number of ASes has grown more
than threefold.

We first examine how applying interventions to dif-
ferent ASes can affect wicked traffic levels. Figure 3
shows how wicked traffic decreases when only the 20
largest ASes (as measured by degree) adopt interven-
tions, as compared to a random selection of between

9av_degree = 4.2, extent_cost = 1.5, base_income = 5,
pop_distr_exp = -1, wickedness = 0.1.

10As of May 2010.

Figure 3: Impact of interventions on wicked traffic rate.
“20 largest” is the effect when the 20 largest ASes inter-
vene; “random x%” is the effect when x percent of all ASes
intervene.

10-30% of all ASes. This illustrates the case where
interventions are coordinated at the largest ISPs to a
hands-off approach where ISPs decide for themselves
whether or not to adopt countermeasures. The graph
clearly demonstrates that targeting the largest ASes
is a superior strategy, given that targeting just the
20 largest ASes (0.2% of the total) reduces traffic by
more than applying interventions to even 3 000 ran-
domly selected ASes.

It is not particularly surprising that targeting the
largest ASes is the most effective strategy, given the
structure of the AS graph. In our simulations, the
largest ASes route up to six orders of magnitude more
traffic than the smallest. Nonetheless, the results re-
inforce the argument that remediation policies can
be more successful by focusing on a small group of
the largest ASes, unless a majority of all ASes can be
persuaded to unilaterally respond.

What is more striking is the comparison between
ingress and egress filtering. Filtering ingress traffic
destined for end users only (i.e. not filtering transit
traffic) is about as effective as filtering egress traf-
fic (around 10% when the largest ASes intervene).
Ingress filtering of both end-user and transit traffic
at the largest ASes, by contrast, reduces wicked traf-
fic by a factor of 2.7 over egress alone. This is a
more surprising finding, as it suggests that filtering
incoming wicked traffic is more effective than stop-
ping outgoing traffic. When ASes act unilaterally,
the difference is not as large (a factor of 1.8) because
the smaller ASes transit less traffic.
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Figure 4: Impact of interventions on wicked traffic rate
on those ASes that intervene, and those that do not. “20
largest” is the effect when the 20 largest ASes intervene;
“random x%” is the effect when x percent of all ASes
intervene.

Most policy interventions under discussion have
focused on ISPs’ remediating customer infections,
which is akin to egress filtering. While this does
reduce wicked traffic levels, our results suggest that
resources might be put to better use by filtering in-
coming and transit traffic for wickedness.

Figure 4 compares the decrease in wicked traffic at
ASes that implement the interventions to the reduc-
tion at ASes that do not adopt any interventions. The
benefits for non-intervening ASes represent a way to
measure the positive externalities of security inter-
ventions in the network. As expected, filtering egress
traffic creates substantial positive externalities, with
non-intervening ASes experiencing similar reductions
in wicked traffic rates as intervening ASes. This effect
holds for both the largest ASes and a random selec-
tion of ASes. By contrast, filtering ingress traffic has
positive externalities only if wicked transit traffic is
blocked. In this case, the greatest benefits accrue to
the intervening ASes. This indicates that when filter-
ing ingress traffic, the incentives for adopting coun-
termeasures are more aligned, and there should be
less fear of free-riding.

Furthermore, the positive externalities of ingress
filtering (including transit traffic) can vary greatly
depending on which ASes intervene. The benefits to
non-intervening ASes are more than twice as large
when the largest ASes intervene rather than when
ASes unilaterally intervene at random. This is be-
cause large ASes attract more transit traffic, and so

Figure 5: Effect of the intervention of a fraction of the
largest ASes.

their filtering has a greater impact.
Even if having the largest ASes implement an inter-

vention is the preferred strategy for reducing wicked
traffic on the Internet, it may not be possible to en-
list the support of all ASes. For example, even if all
large US-based ISPs adopted ingress and egress filter-
ing, operators in other countries might choose not to
participate. To investigate the impact of incomplete
adoption, Figure 5 explores how varying the propor-
tion of large ASes that participate in the intervention
affects the reduction of malicious traffic.

Although wicked traffic falls as more ASes partici-
pate, the effect is non-linear. For example, the differ-
ences between 80% and 100% of ASes intervening are
not great (from 27% to 30% wicked traffic reduction,
an 11% change), whereas the differences between 60%
and 80% are much greater (from 21% to 27%, a 29%
change). This suggests that country-level interven-
tions are much more likely to be effective if they in-
clude the majority of large ASes. For example, if the
all the largest ISPs based in the US were to intervene,
that would constitute at least 75% of all large ASes.

In all the experiments reported previously, the
ingress and egress filtering effectiveness was set at
20%. However, some interventions are likely to
be more effective than others. Notification-based
schemes will filter less egress wicked traffic than active
quarantine, and increased data sharing could raise
the success rate of both ingress and egress filtering.
It is very difficult to get reliable information on the
efficacy of these different approaches. Instead, in Fig-
ure 6 we explore how different combinations of values
for the success rates of ingress and egress filtering af-
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Figure 6: How the wicked traffic rate falls when varying
the success rate of ingress and egress filtering. The scale
indicates on the right the reduction in wicked traffic, from
0 to 40%.

fect the wicked traffic rates. Ingress filtering is consis-
tently more effective at reducing overall wickedness.
For instance, ingress filtering 35% of wicked traffic
and no egress traffic reduces the wicked traffic rate
by the same amount as 20% ingress and 40% egress
filtering.

We also study the more aggressive intervention of
completely blocking all traffic originating from black-
listed ASes with unacceptably high wicked traffic
rates. Blacklisting results in a trade-off between re-
ducing wicked traffic and collateral damage caused by
blocking innocent traffic. We consider only the case
where interventions are carried out by the 20 largest
ASes (those of degree ≥ 170), because, as seen pre-
viously, interventions are most successful when the
largest ASes act in concert.

There are two choices to make when applying
blacklisting: first, the selection of the level of wicked-
ness above which ASes are blacklisted, and second,
the selection of whether to not blacklist larger ASes.
We explore three levels of AS size: blacklisting all
ASes above the wickedness level, or those of degree
< 170, or those of degree < 10. For each choice of
AS size, we select levels of wickedness that result in
losses of legitimate (good) traffic of 2%, 5%, 10% and
15%.

Figure 7 shows that the best strategy when ap-
plying blacklisting depends very much on the level
of legitimate traffic loss we are willing to tolerate.
For very low losses (2%) the strategies have similar
results. For more moderate losses (5%), we should

Figure 7: Trade-off between reducing wicked traffic and
losing legitimate traffic when blacklisting.

blacklist all but the 20 largest ASes. Beyond that, it
is more effective to blacklist all ASes. However, we
see diminishing returns as the level of acceptable loss
increases. For example, when blacklisting all ASes,
a 50% increase in acceptable loss, from 10% to 15%,
only reduces the wicked traffic by an additional 23%.

In fact, increasing the level of acceptable loss does
not always reduce wicked traffic. As can be seen in
Figure 8, the largest reduction of wicked traffic hap-
pens around a wickedness level of 0.08. Furthermore,
there is a range over which the wicked traffic reduc-
tion changes little; thus, the best choice of wickedness
level would probably be around 0.12 for this example;
anything lower increases the loss of legitimate traffic
with no beneficial wicked traffic reduction.

5.2 Impact on Network Growth
The effect of malicious activity on the growth of the
AS network is a complex issue, one that we do not
have the space to investigate in depth in this paper.
As an illustration of some of the potential for model-
ing chronic attacks in ASIM, we briefly consider how
the cost of intervention influences network growth.
Blacklisting is the simplest intervention to incorpo-
rate into the economics of ASIM, because ASes earn
money according to how much traffic they route.
Blacklisting reduces the amount of traffic (both le-
gitimate and wicked) seen by ASes and hence should
change the evolution of the network.

We carried out experiments where the 20 largest
ASes intervene to blacklist all traffic originating from
ASes of degree less than 170. We set the wickedness
level for blacklisting to be 0.18, which results in mod-
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Figure 8: The reduction in wicked traffic and the loss
of legitimate (good) traffic when blacklisting all ASes of
degree < 170.

erate legitimate traffic loss. At this level, according
to Figure 7, the best strategy is to blacklist all suffi-
ciently wicked ASes of degree less than 170.

Figure 9 shows how wicked traffic and lost legiti-
mate traffic change as the network evolves from 5 000
to 13 000 ASes. The wicked traffic increases slightly
(by about 9%) and the lost legitimate traffic decreases
significantly (by about 66%). To understand why this
happens, consider two classes of ASes: those that
lose incoming traffic due to blacklisting (class A) and
those that do not (class B). In ASIM, every AS de-
pends on traffic for revenue, and so ASes in class A
will earn less and hence grow more slowly than ASes
in class B. The ASes in class A will have reduced
levels of wicked traffic and increased levels of lost le-
gitimate traffic compared to those in class B. Thus,
as ASes in class B grow more than those in class A,
the overall level of wicked traffic will increase, and
the overall level of legitimate traffic lost will decrease.
This is exactly what we see in Figure 9.

Although blacklisting tends to promote ASes that
receive more wicked traffic, the rate at which wicked
traffic increases is much slower than the rate at which
lost legitimate traffic decreases. Hence, blacklisting
could still be considered a viable strategy for reducing
overall wickedness, at least in the short term. Per-
suading individual ASes to voluntarily adopt black-
listing, however, would be hard. Mandatory partici-
pation would likely be necessary.

Figure 9: Change wicked traffic and loss of legitimate
traffic over time as the network grows from 5 000 to 13 000
ASes. The wicked traffic rate is the percentage of all
traffic that is wicked.

6 Related Work
Few studies have modeled the costs and benefits of in-
tervention to prevent the spread of malware across a
network. LeLarge [19, 20] used an agent-based model
to investigate the economics of interventions that
counter the spread of malware. However, LeLarge’s
model is much more abstract than ASIM: agents ex-
ist on a random network, over which there is a proba-
bilistic spread of infections. Agents can choose either
to secure themselves (at a cost) or to remain unse-
cured and risk loss. There is no notion of geogra-
phy or traffic. Varian [34] proposed a game-theoretic
model to understand how security impacts the deci-
sions of other rational actors, but without consider-
ing network topology or how infections may spread.
Subsequently, a number of authors [26, 5] have pro-
posed models of computer-infection spread that com-
bine game theory with network topology. These mod-
els focus on optimal strategies to combat a binary
state of infection.

By contrast, a number of models have been de-
veloped to explore the spread of malware, such as
computer worms [14]. Compartmental models of dis-
ease spread (whether biological or electronic) are at-
tractive methods for investigating the progress of epi-
demics [4]. For example, Ajelli et al. describe the
spread of a botnet using such a model [1]. Other work
incorporates additional factors into differential equa-
tion models, such as locations based on time zone [12]
and peer-to-peer protocols [29]. These approaches fo-
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cus on the spread of a single type of malware, such
as a particular worm or botnet. By contrast, our ap-
proach is to model all malware in a generic way, in-
corporating both the economics of interventions, and
the way interventions affect the spread of malicious
traffic on the Internet topology at the AS level.

A major difference between agent-based models,
such as ASIM, and differential equation models, such
as those described above, is that the latter assume
that populations are ‘well-mixed’; consequently they
do not capture the effect of skewed network topolo-
gies. Various extensions, such as percolation methods
and generating functions [25], have been proposed as
a method for overcoming this limitation, spawning a
great deal of interest in epidemics on network topolo-
gies [15]. Other extensions include using packet-level
data generated by computer network traffic simula-
tors [35]. In addition to investigating the spread of
malware across network topologies, mitigation strate-
gies such as quarantining malicious hosts [22, 27, 11]
have been investigated. However, to the best of our
knowledge, there are no studies that use these mod-
els to investigate intervention policies at the ISP or
Internet-level.

7 Discussion
ASIM simplifies many aspects of routing on the real
Internet. For example, traffic in ASIM always follows
the shortest path, whereas real traffic is also influ-
enced by agreements between ASes, following various
conventions such as the “valley free” rule. In ASIM
ASes earn money from all traffic they route, whereas
in reality ASes earn money from their customers and
pay their own upstream providers. But we found in
preliminary investigations that these added complexi-
ties do not improve the accuracy of the model, at least
in terms of measures such as average path length, de-
gree distribution, etc. More detailed modeling is a
topic for future research and may lead to have impli-
cations for the study of policy interventions.

Other model enhancements would allow us to study
more carefully the impact of interventions on the eco-
nomics of network growth. We have presented a sim-
ple initial approach, using blacklisting, but in future
we intend to explore other aspects, such as the cost
of carrying out various interventions. Blacklisting is
simple in that packets from a particular source are
dropped, whereas filtering only wicked traffic would
likely be much more expensive, requiring a sophis-
ticated intrusion detection system (IDS). Because of
the performance requirements, it may be infeasible to

filter traffic using an IDS at the level of the powerful
routers used in the largest ASes. In this case, black-
listing and improving end-user security may be the
only reasonable options.

In our experiments with network growth, we kept
the level of wickedness, or compromised hosts, con-
stant. This is clearly unrealistic as the number of
compromised hosts changes over time as some are
cleaned up and others infected. Furthermore, we ex-
pect that the amount of wicked traffic reaching end-
users will also influence infection rates. It is difficult
to find good data on how these rates change over time,
and so it will be difficult to validate a model that cap-
tures these aspects. One topic for future research is to
model dynamic wickedness levels, perhaps following
an epidemiological model where there is some rate of
recovery from infection, and some rate of reinfection,
which is to some degree dependent on wicked traffic
flow.

8 Conclusions
The results of our experiments using ASIM indicate
that when filtering wicked traffic, the best targets for
intervention are a small group of the largest ASes.
Specifically, we find that intervention by the top 0.2%
of ASes (in terms of size) is more effective than in-
tervention by a randomly chosen subset of 30% of all
ASes. However, we show that this efficacy rapidly
drops off if less than three quarters of that top 0.2%
intervene. This is an issue of importance if not all the
largest ASes fall within the same regulatory domain,
such as a nation-state.

Our experiments also illustrate the relative effec-
tiveness of filtering ingress and egress traffic. We
show that filtering ingress traffic (including transit)
is more than twice as effective as filtering egress traf-
fic alone. Unsurprisingly, the effect of filtering is felt
most strongly by those actively filtering the data, al-
though positive externalities can be seen if outgoing
or transit traffic is filtered. In our model, filtering
egress traffic is also a proxy for end-user remediation,
which suggests that the current focus on cleaning up
ISP customers is not the most effective strategy.

In the case of blacklisting, we show that the choice
of which ASes should be exempt from blacklisting
depends on how much legitimate traffic loss we are
willing to tolerate. If moderate levels of legitimate
traffic loss are acceptable, then large ASes should be
exempt; however, if higher levels of traffic loss are
acceptable all ASes should be eligible for blacklisting.
The threshold for which ASes are blacklisted does not

11



relate linearly to the reduction in the wicked traffic
rate. This is likely due to attrition of good traffic,
raising the fraction of wicked traffic seen.

Our investigations of the impact of interventions
on the evolution of the network are brief and are lim-
ited to modeling the effect of blacklisting traffic on
growth. We show that blacklisting traffic results in a
gradual increase in wicked traffic, and a more rapid
reduction in the loss of legitimate traffic. Although
this is beneficial in the short term, in the long-term
those ASes that profit most from wicked traffic will
prosper at the expense of more secure ASes, and so
global effectiveness will decline.

We believe that the results reported in this pa-
per are a good proof-of-concept demonstration of how
agent-based modeling can be useful to policy makers
when considering different interventions. We hope
in future that our approach will provide additional
interesting results and tools to help policy makers
determine the best way to respond to the growing
malware threat.
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