
SCALABLE MACHINE LEARNING USING APPLICATIONS

IN BIOINFORMATICS AND CYBERCRIME

Approved by:

Dr. Tyler Moore

Dr. Michael Hahsler

Dr. Margaret Dunham

Dr. Eric Larson

Dr. Sukumaran Nair

Dr. Christopher Oehmen

SCALABLE MACHINE LEARNING USING APPLICATIONS

IN BIOINFORMATICS AND CYBERCRIME

A Dissertation Presented to the Graduate Faculty of the

Bobby B. Lyle School of Engineering: Department of Computer Science

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Science

by

Jake M. Drew

(B.S., The University of Texas at Tyler, 2011)
(M.S., Southern Methodist University, 2013)

December 19, 2015

ACKNOWLEDGMENTS

I dedicate this thesis to my amazing wife Victoria and to my son Nathan Drew.

Life would not be worth living without their love and support. I want to thank my

parents Eddy and Linda Drew for continually supporting my dreams and for keeping

me focused on what is important. I look up to my older brother Dr. Eric Drew, and

I am grateful for his inspiration as a successful Neurologist. He proved to me that I

am capable of this. I would also like to acknowledge my other younger brothers and

sisters Joseph, Christina, Emily, and Jordan. Next, I am deeply grateful to Allen and

Vicky McDowell for believing in me even when I was not sure why they did. Both

of you helped me to see and believe in my own potential. I am sincerely thankful for

Lorin and Nellie McDowell and Darrell and Joyce Baggett. Words cannot express my

gratitude for you wisdom and guidance.

Finally, I would like to pay homage to all of my mentors who are too many list

individually. Certainly I would like to thank my advisers Dr. Tyler Moore and Dr.

Michael Hahsler. I’m not sure how I was fortunate enough to deserve two advisers

or such excellence in educational mentorship. Dr. Maggie Dunham, thank you for

always looking out for me and teaching me such valuable skills which I never would

have had the opportunity to be exposed to otherwise. Dominic Giannangeli, you

spent over 10 years molding me into a proficient executive and teaching me how to

find the diamonds in data. You laid a foundation of excellence in my professional

development. Thank you. Chuck Hopf, thank you for being the wise curmudgeon

that really taught me how to snatch the pebble and write the code. You are my hero

for that!

iii

Drew , Jake M. B.S., The University of Texas at Tyler, 2011
M.S., Southern Methodist University, 2013

Scalable Machine Learning Using Applications

in Bioinformatics and Cybercrime

Advisors: Professor Tyler Moore and Professor Michael Hahsler

Doctor of Philosophy degree conferred December 19, 2015

Dissertation completed December 19, 2015

SUMMARY

This thesis contributes multiple scalable machine learning applications in the fields

of bioinformatics and cybercrime. A highly parallel framework for machine learning,

called the Collaborative Analytics Framework is also presented. The framework lever-

ages shared memory to efficiently process large datasets. Applications in bioinformat-

ics gene sequence classification are implemented. In the gene sequence classification

problem, unlabeled gene sequences are matched to sequences labeled with known

taxonomies. Existing alignment-based methods are inefficient in practice and must

balance performance by using shorter word lengths.

Prior alignment-free methods do not scale efficiently as the number of trained se-

quences grows. A new alignment-free method, called Strand, is introduced. STRAND

achieves as good or better accuracy than existing alignment-free methods, at improved

speed and a reduced in-memory training database footprint. STRAND achieves this

by exploiting a form of lossy compression called minhashing as part of an in-memory

MapReduce-style framework. Strand is also applied to shotgun classification chal-

lenges for purposes of Abundance Estimation.

Scalable machine learning applications are then applied to multiple cybercrime

datasets. First, a method is presented to cluster criminal websites which are loose

iv

copies of one another. This general method is then applied to two specific cases,

detecting thousands of copied Ponzi Scheme and Escrow Fraud websites. Second, a

binary classifier is developed to examine search results for luxury goods to identify

websites selling knock-offs. Finally, the Strand application is also used to detect

various classes of malware data treating each malware’s binary content as a gene

sequence and successfully detecting large volumes of malware files with a high level

accuracy and processing efficiency.

v

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Methods and Prior Work . 2

1.2.1. MapReduce Style Processing Pipelines . 2

1.2.2. Minhashing . 3

1.3. Structure and Contribution . 5

2. THE COLLABORATIVE ANALYTICS FRAMEWORK FOR PAR-
ALLEL MACHINE LEARNING . 10

2.1. Introduction . 10

2.2. Primary Types of Multicore Development . 11

2.2.1. Asymmetric Multiprocessing . 11

2.2.2. Symmetric Multiprocessing . 12

2.3. Multicore Development Alternatives . 12

2.3.1. OpenMP. 12

2.3.2. OpenCL . 13

2.3.3. Thread Building Block . 13

2.3.4. Message Passing Interface . 13

2.3.5. Cilk++ . 14

2.4. Rapid Multicore Development Using C# . 14

2.4.1. Thread Safe Locking and Memory Barriers 15

2.4.2. Fork Join . 16

vi

2.4.3. Parallel Pipelines . 16

2.4.4. Thread Pools and Work Stealing . 17

2.4.5. Parallel Divide and Conquer . 17

2.4.6. MapReduce and Spark . 18

2.4.7. Process Level Parallelism . 23

2.5. A Framework for Parallel Machine Learning. 24

2.5.1. The Collaborative Analytics Framework for Parallel Ma-
chine Learning . 26

2.5.2. Map Reduction Aggregation . 27

2.5.2.1. Map Reduction Aggregation for Web Document
De-duplication and Classification 33

2.5.3. The Classification Metric Function . 35

2.5.4. Lossy Compression Using Locality Sensitive Hashing 39

2.5.5. Applying The Collaborative Analytics Framework to Ma-
chine Learning Tasks . 43

2.5.6. Managing Speed Differences Between Pipeline Producers
and Consumers . 46

2.6. A Framework for Parallel Feature Extraction. 48

2.6.1. Extracting Luminosity Histogram Features From Images
in Parallel Using C# . 49

2.6.2. Extracting the RGB Channels . 49

2.6.3. Creating the Distance Matrix in Parallel . 51

2.6.4. Hierarchical Agglomerative Clustering using R 54

2.6.5. Conclusion . 60

3. DEVELOPING FEATURES FOR BIOINFORMATICS 61

3.1. Introduction . 61

vii

3.2. Sequence Feature Extraction . 62

3.3. Background . 63

3.3.1. Word Extraction . 63

3.3.2. Minhashing . 64

3.3.3. MapReduce Style Processing . 65

3.4. Extracting Bioinformatics Features for Abundance Estimation 66

3.4.1. Word Extraction for Abundance Estimation 68

3.4.2. Creating Words from Sequences that do not Fit into Memory 69

3.4.3. Creating Minhash Signatures from Sequences that do not
Fit into Memory . 70

3.5. Conclusion . 73

4. S.T.R.A.N.D. 74

4.1. Learning Category Signatures . 75

4.1.1. Mapping Sequences into Words . 76

4.1.2. Creating Sequence Minhash Signatures . 76

4.1.3. Reducing Sequence Minhash Signatures into Category Sig-
natures . 78

4.2. Classification Process . 79

4.3. Results . 81

4.3.1. Choosing Word Size and Signature Length 81

4.3.2. Comparison of Strand and RDP on the RDP Training Data . 84

4.3.3. Comparison of Strand and RDP on the Greengenes Data 86

4.3.4. Conclusion . 90

4.4. Using Strand for Abundance Estimation . 90

4.4.1. Map Reduction Aggregation . 91

viii

4.4.1.1. Minhashing during Map Reduction Aggregation . . . 92

4.4.2. Training Data Compression . 95

4.4.2.1. Merge Sort Processing and TrainingWorker Dedu-
plication . 95

4.4.2.2. 64-Bit Minhash Value Compression 96

4.4.2.3. Classification Training Database Optimization 97

4.4.3. Classification Function Processing . 98

4.4.4. Applying Strand to Machine Learning Tasks 100

4.4.5. Strand Computing Clusters . 103

4.4.6. Results . 105

4.4.7. Strand Cluster Computing Benefits . 106

4.4.8. Strand vs. CLARK HiSeq Performance . 107

4.4.9. Strand Training on the NCBI Complete RefSeq Database . . . 107

4.4.10. Conclusion . 110

5. DEVELOPING FEATURES FOR CYBERCRIME . 112

5.1. Developing Features to Identify Replicated Criminal Websites 112

5.1.1. Process for Identifying Replicated Criminal Website Features 113

5.1.2. Data Collection Methodology . 113

5.1.3. Feature Extraction Processing . 115

5.1.4. Selecting an Appropriate Distance Metric 116

5.1.5. Map Reducing Distance Matrices . 116

5.1.6. Identifying and Extracting Website Features 117

5.1.7. Website Features . 118

5.1.8. Constructing Distance Matrices . 119

5.2. Developing Features to Identify Websites Selling Counterfeit Goods. 120

ix

5.2.1. Data Collection Methodology . 121

5.2.2. Constructing Search Queries . 122

5.2.3. Gathering Data on Websites in Search Results 122

5.2.4. Feature Selection and Extraction . 123

5.3. Conclusion . 126

6. IDENTIFICATION OF PONZI SCHEME AND ESCROW FRAUD
WEBSITES . 128

6.1. Introduction and Background . 128

6.2. Process for Identifying Replicated Criminal Websites 130

6.3. Optimized Combined Clustering Process . 132

6.3.1. Cluster Cut-Height Selection . 132

6.3.2. Individual Clustering . 133

6.3.3. Best Min Combined Clustering . 134

6.4. Evaluation Against Ground-Truth Data . 136

6.4.1. Performing Manual Ground Truth Clusterings 137

6.4.2. Results . 139

6.5. Examining the Clustered Criminal Websites. 142

6.5.1. Evaluating Cluster Size . 142

6.5.2. Evaluating Cluster Persistence . 143

6.6. Related Work . 145

6.7. Concluding Remarks . 147

7. DETECTION OF WEBSITES SELLING COUNTERFEIT GOODS 151

7.1. Introduction . 151

7.2. Classifying Websites Selling Counterfeits . 152

7.2.1. Building and evaluating the classifiers . 152

x

7.2.2. The Blended Model Approach . 155

7.2.3. Counterfeit Goods Classification Feature Importance 156

7.3. Related Work . 161

7.4. Conclusion . 162

8. APPLYING STRAND TO MALWARE CLASSIFICATION 164

8.1. The Training and Classification Input Data . 165

8.2. Challenge Evaluation, Competitors, and Results 165

8.3. Applying Strand to Microsoft Malware Classification Challenge 166

8.4. Developing Malware Features for Strand . 167

8.5. Malware Classification Results Using Strand . 168

8.6. Conclusion . 170

9. CONCLUSION AND FUTURE WORK . 171

9.1. Concluding Remarks . 171

9.2. Future Research Opportunities . 173

REFERENCES . 175

xi

PUBLISHED WORK

During my research at SMU, I have published the following papers, US patent

applications, posters, and Blog posts. Many of these works are related to topics

covered in this thesis while others represent ancillary research and programming in-

terests. One of my papers received a best paper award: Automatic Identification of

Replicated Criminal Websites Using Consensus Clustering Methods (IWCC 2015).

This also resulted in a second journal publication on this topic: Optimized Combined

Clustering Methods for Finding Replicated Criminal Websites (EURASIP Journal

on Information Security 2014). In addition, I have filed for three US Patent Ap-

plications during my tenure at the University. My research has been awarded first

place in Computer Science at the SMU Research Fair during 2013, 2014, and 2015.

I have published over 13 technical blogs on Code Project codeproject.com with a

total of 166,783 views and an average rating of 4.91 out of 5 stars. Two of these arti-

cles (MapReduce / Map Reduction Strategies Using C#) and (Parallel Programming

in C# and other Alternatives) have over 35,000 views each. I have been a fea-

tured blogger on datasciencecentral.com, dataplumbing.com, hadoop360.com,

kdnuggets.com and the Harvard Innovation Lab’s experfy.com. In addition, my

article: “Machine Learning in Parallel with Support Vector Machines, Generalized

Linear Models, and Adaptive Boosting” was the most viewed and favorited article

on kdnuggets.com during the week of 03/23/2014.

PUBLICATIONS

Mass Compromise of IIS Shared Web Hosting for Blackhat SEO: A Case Study,

(TBD), 2015.

xii

Jake Drew and Tyler Moore, The E-Commerce Market for “Lemons”: Identifica-

tion and Analysis of Websites Selling Counterfeit Goods, 24th International World

Wide Web Conference (WWW 2015), 2015.

Jake Drew and Tyler Moore, Optimized Combined Clustering Methods for Finding

Replicated Criminal Websites, EURASIP Journal on Information Security, 2014.

Jake Drew and Michael Hahsler, Practical Applications of Locality Sensitive Hash-

ing for Unstructured Data, Performance & Capacity 2014 by CMG, 2014.

Jake Drew and Michael Hahsler, Strand: Fast Sequence Comparison using MapRe-

duce and Locality Sensitive Hashing, The 5th ACM Conference on Bioinformatics,

Computational Biology, and Health Informatics (ACM BCB 2014), 2014.

Jake Drew and Tyler Moore, Automatic Identification of Replicated Criminal

Websites Using Consensus Clustering Methods, IEEE International Workshop on

Cyber Crime (IWCC 2014), 2014.

Jake Drew and Michael Hahsler, ‘Strand: Variable Length K-mer Sequence Com-

parison Using Map Reduce and Locality Sensitive Hashing’ (poster), SIAM Confer-

ence on Data Mining (SDM 2014) Doctoral Forum, 2014.

US PATENT APPLICATIONS

Jake Drew, Collaborative Analytics Map Reduction Classification Learning Sys-

tems and Methods, USPTO 61/761,523 US20140222736 A1, 2013.

Jake Drew, Single Pass Hierarchical Agglomerative Clustering Systems and Meth-

ods, 61/777,055, 2013.

Jake Drew, Michael Hahsler and Tyler Moore, System and Method for Machine

xiii

Learning and Classifying Data, 61/825,486, 2013.

TECHNICAL BLOGS

Jake Drew, Building The Ultimate Multipurpose Gaming Workstation Server, 5

Stars, 3,211 views, 2015.

Jake Drew, Machine Learning in Parallel with Support Vector Machines, Gener-

alized Linear Models, and Adaptive Boosting, 4.50 Stars, 14,450 views, 2014.

Jake Drew, Practical Applications of Locality Sensitive Hashing for Unstructured

Data, 5 Stars, 11,271 views, 2014.

Jake Drew, Clustering Similar Images Using MapReduce Style Feature Extraction

with C# and R, 4.83 Stars, 7,163 views, 2014.

Jake Drew, MapReduce / Map Reduction Strategies Using C#, 4.80 Stars, 38,803

views, 2013.

Jake Drew, Parallel Programming in C# and other Alternatives, 4.77 Stars, 35,059

views, 2013.

Jake Drew, Controlling Your Web Camera Using C#, 4.92 Stars, 25,895 views,

2013.

Jake Drew, Getting Only The Text Displayed On A Webpage Using C#, 5 Stars,

16,340 views, 2013.

Jake Drew, A New JavaScript Wrapper Library for HTML5’s IndexedDB, 5 Stars,

12,997 views, 2012.

Jake Drew, Creating N-grams Using C#, 5 Stars, 8,442 views, 2013.

xiv

Jake Drew, Automating the HTML5 Manifest, jQuery, and Plugins, 5 Stars, 6,221

views, 2012.

Jake Drew, Image Thinning Using R, 5 Stars, 5,117 views, 2013.

Jake Drew, Making Footable.Editable âĂŞ Cool Things Everyone Should Know

About JavaScript, jQuery, and Plugins, 5 Stars, 4,706 views, 2013.

PRESENTATIONS AND AWARDS

Presenter, Performance & Capacity 2014 by CMG, November 2014.

Presenter, The 5th ACM Conference on Bioinformatics (ACM BCB), September

2014.

Best Paper Award, IEEE International Workshop on Cyber Crime, May 2014.

Presenter, IEEE International Workshop on Cyber Crime, May 2014.

Scholarship Recipient, SIAM Data Mining Conference Doctoral Forum, April

2014.

Presenter, SIAM Data Mining Conference Doctoral Forum, April 2014.

1st Place, The IBM Great Mind Challenge: Watson Technical Edition, March

2014.

1st Place, SMU Research Fair, Computer Science, February 2013.

1st Place, SMU Research Fair, Computer Science, February 2014.

1st Place, SMU Research Fair, Computer Science, February 2015.

xv

Summa Cum Laude, The University of Texas at Tyler, December 2011

4.0 Cumulative GPA, The University of Texas at Tyler, December 2011

Student of the Year, The University of Texas at Tyler, Engineering and Computer

Science, April 2011

Presenter, Alpha Chi National Convention, April 2011

Alpha Chi Honor Society, December 2010

xvi

Chapter 1

INTRODUCTION

1.1. Motivation

The US digital universe currently doubles in size approximately every three years [73].

In fact, Hewlett Packard estimates that by the end of this decade, the digital universe

will be measured in ‘Brontobytes’, which represent one billion Exabytes or around

two quadrillion years of music [139]. Each minute, internet users send over 204 million

emails, Google receives over 4 million search requests, YouTube users upload 72 hours

of video, and 277,000 tweets are posted on twitter [46]. It is estimated that in 2012,

only 1/2 a percent of the data in the US digital universe was analyzed [73].

The massive volumes of information generated each day currently make it impos-

sible to monitor everything within the digital universe. However, many acknowledge

that this information is critically important. Certain investment corporations such

as Artemis, Mediolanum Asset Management, and Bridgewater already publicly dis-

close the incorporation of online information into core investment strategies, and the

SEC also deemed social media outlets as an ‘acceptable information dissemination

medium’ for material non-public information in 2013, as long as the market has been

notified that the channel is being used for such a purpose [10].

Large internet corporations, such as Google, use massively parallel Machine Learn-

ing techniques for extracting valuable content from our digital universe. During 2012,

Google Machine Learning models executed on as many as 970 processing cores which

consumed around 61.93TB of compressed raw data and 129 billion training exam-

1

ples [28]. Unfortunately, such algorithms are considered trade secrets and not pub-

licly disclosed. While open source programming languages such as R may offer many

machine learning packages, as of today, only 3 out of 72 packages on the R Machine

Learning and Statistical Learning home page are referenced as operating in paral-

lel [70].

The contribution of this thesis is to address the lack of massively parallel methods

for machine learning, which are currently available in the literature and public domain.

1.2. Methods and Prior Work

I describe a number of machine learning related techniques for performing feature

extraction, feature preparation, training, and classification using multicore MapRe-

duce style processing pipeline implementations. I also present parallel programming

algorithms for feature space compression using techniques such as minhashing which

is a form of locality sensitive hashing. These multicore MapReduce style processing

pipeline implementations are applied to the fields of bioinformatics and cybercrime

using both supervised and unsupervised machine learning techniques.

1.2.1. MapReduce Style Processing Pipelines

MapReduce style programs break algorithms down into map and reduce steps

which represent independent units of work that can be executed using parallel pro-

cessing [31, 39, 48]. Initially, input data is split into many pieces and provided to

multiple instances of the mapping functions executing in parallel. The result of map-

ping is a key-value pair including an aggregation key and its associated value or values.

The key-value pairs are redistributed using the aggregation key and then processed

in parallel by multiple instances of the reduce function producing an intermediary or

final result.

2

MapReduce is highly scalable and has been used by large companies such as

Google [39] and Yahoo! [16] to successfully manage rapid growth and extremely mas-

sive data processing tasks [106]. Over the past few years, MapReduce processing has

been proposed for use in many areas including: analyzing gene sequencing data [106],

machine learning on multiple cores [84], and highly fault tolerant data processing

systems [31,40].

More recently, a new model of cluster computing ‘Spark’ reported performance

gains of 10x when compared to Hadoop’s MapReduce processing model [160]. In

addition, the Apache Spark platform claims performance gains up to 100x over

Hadoop Mapreduce when processing data in memory [2]. Spark uses map and reduce

steps similar to Hadoop’s MapReduce adding in-memory RDDs (Resilient Distributed

Datasets) which are data partitions that can easily be replaced when lost [160].

The performance gains achieved by Spark are similar to the multicore MapReduce

style processing pipeline implementations described in this research. By keeping data

from multiple map and reduce steps available in memory, large gains in performance

and parallelism are achieved. Typically, traditional MapReduce processing completes

mapping stages by writing the mapped results to disk where reduce stage workers

process the files created by the mapping stage as input.

1.2.2. Minhashing

Working with large amounts of unstructured data (e.g., text documents) has be-

come important for many business, engineering, and scientific applications. Locality

sensitive hashing systems drastically reduce the time required to perform a similarity

search in high dimensional space (e.g., created by the terms in the vector space model

for documents). Locality sensitive hashing also dramatically reduces the amount of

data required for storage and comparison by applying probabilistic dimensionality re-

duction. I concentrate on the implementation of min-wise independent permutations

3

(MinHashing) which provides an efficient way to determine an accurate approxima-

tion of the Jaccard similarity coefficient between sets (e.g., sets of terms in documents

or sets of words extracted from gene sequences) [63,76].

The concept of locality sensitive hashing has been around for some time now with

publications dating back as far as 1999 [63] exploring its use for breaking the curse of

dimensionality in nearest neighbor query problems. Prior to locality sensitive hashing,

the data structures used for similarity searches scaled very poorly. Without using

a method for approximation such as locality sensitive hashing, searches exceeding

10 to 20 dimensions, require inspection of most records in the database similar to

a brute force linear search. Companies like Google have published improved LSH

algorithms [76] using a consistent weighted sampling method “where the probability of

drawing identical samples for a pair of inputs is equal to their Jaccard similarity” [76].

This means that when a minhash function is used to randomly select a permutation of

values from a set, the number of matching values drawn equals the Jaccard similarity

of the two sets [93]. This approximation of Jaccard similarity is highly accurate and

increases in accuracy as the sample size increases [93].

In word-based sequence comparison, sequences are often considered to be sets

of words. A form of locality sensitive hashing called minhashing uses a family of

random hash functions to generate a minhash signature for each set. Each hash

function used in the family of n hash functions implement a unique permutation

function, imposing an order on the set to be minhashed. Choosing the element

with the minimal hash value from each of the n permutations of the set results in a

signature of n elements. Typically the original set is several magnitutes larger than

n resulting in a signicant reduction of the memory required for storage. From these

signatures an estimate of the Jaccard similarity between two sets can be calculated [23,

93]. Minhashing has been successfully applied in numerous applications including

4

estimating similarity between images [24] and documents [23], document clustering

on the internet [25], image retrieval [32], detecting video copies [29], and relevant

news recommendations [98].

1.3. Structure and Contribution

This research is organized around the application of multicore machine learning

using MapReduce style processing pipeline implementations and locality sensitive

hashing data compression techniques to challenging machine learning problems in the

fields of bioinformatics and cybercrime. The contribution of this thesis is to provide

additional innovation and support for scalable machine learning using applications

bioinformatics and cybercrime. Chapters 5 - 8 detail these primary application-driven

contributions.

In Chapter 2, I present a feature extraction framework using highly parallel

producer-consumer pipelines for processing very large volumes of input data. While

these ‘parallel pipelines’ are similar to MapReduce style processing, they differ in

regards to MapReduce by allowing both the ‘map’ and ‘reduce’ stages access to the

same shared memory for enhanced parallelism. I also perform the parallel extraction

of features from a variety of unstructured data sources such as gene sequences, text,

webpages, html, and images. I consider additional techniques such as the creation

of both individual and combined distance matrices for unsupervised machine learn-

ing, extracting any number of features from webpages to estimate webpage similarity,

and creating both vertical and horizontal luminosity histograms in parallel for the

purposes of calculating the similarity between images.

Chapter 3 builds upon the machine learning framework and features for the do-

main of Bioinformatics. I use the highly parallel feature extraction framework to

rapidly extract words from varying lengths of unstructured gene sequence data and

5

present techniques for the compression of unstructured gene sequence data during

both learning and classification processing. Edit Distance is approximated by us-

ing Jaccard similarity when determining the similarities and differences between the

words extracted from gene sequence data. Finally, the MapReduce style parallel pro-

cessing pipeline simultaneously identifies unique gene sequence words, minhashes each

word to generate minhash signatures, and intersects minhash signatures to estimate

Jaccard similarity for highly accurate and efficient identification of gene sequence

taxonomy feature classes.

Next, I present STRAND - the Super-Threaded, Reference-Free, Alignment-Free,

N-Sequence Decoder in Chapter 4. STRAND is a machine learning platform for the

identification and classification of gene sequence data into any number of gene se-

quence taxonomy classes using these highly parallel bioinformatics feature extraction

techniques. Sequence classification determines the most likely taxonomy assignment

when the taxonomic origin of a gene sequence is unknown. Taxonomic identifica-

tion of gene sequences is beneficial to physicians when prescribing the best treatment

and medicine to cure illness, and researchers also use sequence classification for the

purpose of identifying genetic defects in the human genome. In the second use case,

defects become classes used during training to identify such mutations in a particu-

lar sequence. Current methods, including the state-of-the-art sequence classification

method RDP, balance performance by using a shorter word length. Strand in contrast

uses a much longer word length, and does so efficiently by leveraging MapReduce style

processing and minhashing to divide sequence classification processing across many

parallel worker threads. Strand is able to learn gene sequence taxonomies and clas-

sify new sequences approximately 20 times faster than the RDP classifier while still

achieving comparable accuracy results. I compare the accuracy and performance

characteristics of Strand against RDP using 16S rRNA sequence data from the RDP

6

training dataset and the Greengenes sequence repository.

In Chapter 5, I develop useful machine learning features for cybercrime. Utilizing

website data as input, I present methods for the extraction of numerous cybercrime

features to identify Ponzi scheme, Escrow Fraud, and counterfeit good websites. This

includes URL-level features, webpage-level features, and website-level features which

are combined into various machine learning models for the successful identification

and clustering of such websites. I demonstrate the creation of large scale distance ma-

trices and combine multiple distance matrices to identify and cluster together loose

copies of replicated criminal websites. In the case of criminals committing financial

fraud, we present features which identify criminals who duplicate website content

across many domains only slightly changing each website’s appearance while leaving

the site’s core criminal functionality intact. Criminals creating both Ponzi schemes

and Escrow Fraud related websites often relocate, re-brand, and operate multiple

scams simultaneously across many domains. Features discussed in this chapter iden-

tify repeat offenders by clustering their obfuscated website content. I also describe

other useful features to identify websites selling counterfeit goods. We use these fea-

tures to classify online retailers as "counterfeit" and demonstrate the effectiveness of

these features in Chapter 7. Numerous novel features such as the number of curren-

cies accepted for payment, unusually large iFrames, and the unique brand term count

are combined to distinguish between legitimate and criminal online retailers.

Chapter 6, demonstrates an unsupervised machine learning approach for the iden-

tification of replicated criminal Ponzi Scheme and Escrow Fraud websites which in-

cludes the combination of distance matrices to optimize clustering performance during

both supervised and unsupervised machine learning. In this research, a novel opti-

mized combined clustering method links together replicated scam websites, even when

the criminal has taken steps to hide connections. I explore automated methods to

7

extract key website features, including rendered text, HTML structure, file structure

and screenshots. Next a process is described to automatically identify the best com-

bination of such attributes to most accurately cluster similar websites together. To

demonstrate the method’s applicability to cybercrime, its performance is evaluated

against two collected datasets of scam websites: fake-escrow services and high-yield

investment programs (HYIPs). This method is more accurate than general purpose

consensus clustering approaches, as well as approaches designed for large-scale scams

such as phishing that use more extensive copying of content. The method could

prove valuable to law enforcement, as it helps tackle cybercrimes that individually

are too minor to investigate but collectively may cross a threshold of significance.

For instance, the method identifies two distinct clusters of more than 100 fake escrow

websites each. Furthermore, this approach could substantially reduce the workload

for investigators as they prioritize which criminals to investigate.

Building upon machine learning features for the domain of Cybercrime, Chapter 7

presents a highly parallel machine learning implementation for the identification of

criminal websites. I discuss the identification and analysis of websites selling counter-

feit goods or knockoff products. This research includes utilization of the URL-level,

page-level, and website-level features, as well as webpage screenshots to identify in-

ternet webpages which are likely to be selling counterfeit goods. A binary classifier

is devised that predicts whether a given website is selling counterfeits by examining

these automatically extracted features. We then apply the classifier to results col-

lected between January and August 2014 finding that, overall, 32% of search results

point to websites selling fakes. Using a linear regression, we find that brands with

a higher street price for fakes have higher incidence of counterfeits in search results,

but that brands who take active countermeasures by filing DMCA requests experience

lower incidence of counterfeits in search results. We also study how the incidence of

8

counterfeits evolves over time, finding that the fraction of search results pointing to

fakes remains remarkably stable.

Chapter 8 utilizes both the bioinformatics features and gene sequence classification

software described in Chapters 3 and 4 to detect 9 different types of malware files in-

troduced in the Kaggle Microsoft Malware Classification Challenge (BIG 2015) [79].

This chapter ties together both cybercrime and bioinformatics using many of the

cybercrime feature extraction and detection techniques described in Chapters 5, 6,

and 7. Chapter 2’s Collaborative Analytics Framework facilitates strategic and effi-

cient changes within the Strand application to support processing the content within

any number of malware input files as if they contained gene sequence data.

Finally in Chapter 9, I end with concluding remarks and discussion on future

research opportunities.

9

Chapter 2

THE COLLABORATIVE ANALYTICS FRAMEWORK FOR PARALLEL

MACHINE LEARNING

2.1. Introduction

This chapter introduces the Collaborative Analytics Framework for Parallel Ma-

chine Learning which is a highly parallel MapReduce style processing pipeline for ma-

chine learning very large volumes of input data. I first provide a detailed discussion

of current state of the art multicore development types, packages, and alternatives.

This also includes multicore development design patterns, locking strategies, and a

brief exploration of process level parallelism using examples in the C# programming

language which the Collaborative Analytics Framework was developed in. Next, I

provide an abstract overview of the the Collaborative Analytics Framework itself

discussing in detail how each aspect of the framework functions. Finally, I provide

additional techniques for developing frameworks for extracting features from various

data sources using parallel feature extraction techniques.

Since MapReduce and parallel processing are key multicore development paradigms

considered in this research, I spend additional time discussing details relevant to both

topics and provide very simplistic C# example implementations. I cover this mate-

rial prior to explaining the highly complex MapReduce style producer / consumer

pipelines which make up the Collaborative Analytics Framework. In Chapters 3 -

7, I present actual example embodiments of these abstract frameworks for the fields

of Bioinformatics and Cybercrime. The conceptual groundwork laid in this chap-

10

ter supports each of these subsequent chapters which provide concrete, task based

implementations for each of the frameworks presented.

2.2. Primary Types of Multicore Development

Starting with low level concepts such as “bit parallelism” (i.e. 32 vs. 64-bit

processing) many different types of parallelism exist including instruction level par-

allelism, data parallelism, SIMD (Single Instruction Multiple Data), task parallelism,

and accelerators to name a few. However, in terms of multicore software development

most projects can be divided into two primary categories: asymmetric multiprocess-

ing and symmetric multiprocessing. Of course, many exceptions to this general rule

exist. However, for purposes of this research, understanding the primary distinctions

between AMP and SMP is critical for choosing an optimal multicore machine learning

development platform and architecture.

2.2.1. Asymmetric Multiprocessing

Multicore development projects which implement asymmetric multiprocessing are

typically deployed for very low-level, specialized tasks [131]. The hardware upon

which asymmetric multiprocessing applications execute includes a collection of two

or more CPUs possibly utilizing heterogeneous operating systems which do not typ-

ically have shared memory. AMP systems achieve high levels of data parallelism by

dedicating one or more processors to handling very specific data processing tasks. Un-

der this type of multicore development scenario, a pure C# implementation is most

likely not the optimal choice. While there are third party libraries which allow C#

to deploy AMP solutions [67] and the .NET 4.5 framework has included optimiza-

tions for Non-Uniform Memory Access (NUMA) architectures [109], the current effort

required to deploy AMP solutions in C# is similar to possibly higher performance

11

implementations using a lower level language such as C++.

2.2.2. Symmetric Multiprocessing

The most common form of multicore development is symmetric multiprocessing

(SMP). Under the SMP architecture, high levels of task parallelism are achieved

through distribution of different applications, processes, or threads to different CPUs

typically using shared memory and homogeneous operating systems [6]. The C# pro-

gramming language excels primarily in rapid SMP application development offering

high levels of performance and one of the largest collections of parallel classes and

thread-safe data structures available.

2.3. Multicore Development Alternatives

While there are a very large number of other development alternatives in the multi-

core marketplace, some of the more well-known offerings include: OpenMP, OpenCL,

Thread Building Block (TBB), Message Passing Interface (MPI), and Cilk++. The

following sections present high-level feature overviews and comparisons for each li-

brary. Understanding these alternatives is critical for choosing the best multicore

development solution.

2.3.1. OpenMP

OpenMP is the most widely accepted standard for SMP systems, it supports 3

different languages (Fortran, C, C++), and it has been implemented by many ven-

dors [119]. OpenMP is a relatively small and simple specification, and it supports

incremental parallelism [37]. A lot of research is done on OpenMP, keeping it up to

date with the latest hardware developments. OpenMP is easier to program and debug

than MPI, and directives can be added incrementally supporting gradual paralleliza-

tion [37]. OpenMP does not support thread level control or processor affinity [126].

12

2.3.2. OpenCL

The Open Computing Language (OpenCL) is a lower level “close-to-silicon” mul-

ticore development library [120]. OpenCL introduces the concept of uniformity by

abstracting away underlying hardware using an innovative framework for building par-

allel applications. “The current supported hardwares range from CPUs, GPUs, DSP

(Digical Signal Processors) to mobile CPUs such as ARM.” [159]. While OpenCL

offers “parallel computing using all possible resources on the end system” [120], mul-

ticore development using OpenCL can be quite complex with a steep learning curve.

OpenCL requires configuration of various new abstractions such as “Work Groups”,

“Work Items”, “Host Programs”, and “Kernels” to implement its concept of unifor-

mity [120].

2.3.3. Thread Building Block

The Thread Building Block (TBB) library is Intel’s alternative for multicore de-

velopment. TBB supports task level parallelism with cross-platform support and

scalable runtimes [126]. OpenMP and TBB are similar in regards to the fact that the

concept of threads and thread pools have been abstracted away within the library.

Using both multicore development alternatives, the developer simply submits tasks

without concern for how individual threads or the thread pool are being managed.

This approach has both advantages and disadvantages. Using C#, multicore devel-

opment can be done at either level using the Thread class, Parallel class, or other

available solutions such as LINQ’s AsParallel() method [53].

2.3.4. Message Passing Interface

The Message Passing Interface(MPI) is a AMP multicore development solution.

MPI runs on either shared or distributed memory architectures and can be used on

13

a wider range of problems than OpenMP [37]. Unilke the SMP libraries each MPI

process has its own local variables which is favorable for avoiding the overhead of

locking. In addition, distributed memory computers are less expensive than large

shared memory computers [37] which can be an important factor for large scale mul-

ticore development projects. However, being a lower level implementation, MPI can

be extremely difficult to code involving many low level implementation details [37].

In addition, when a distributed memory architecture is used, performance can be

limited by the communication network supporting each processor.

2.3.5. Cilk++

Cilk++ is a second multicore development alternative provided by Intel for sup-

porting lower level implementation scenarios which may not be possible using Thread

Building Blocks. Development in Cilk++ is a quick and easy way to harness the

power of both multicore and vector processing with the library providing support for

both task and data parallelism constructs [75]. With only 3 keywords, the Cilk++

library is relatively easy to learn providing an efficient work-stealing scheduler and

powerful hyperobjects which allow for lock-free programming [75].

2.4. Rapid Multicore Development Using C#

The C# suite of multicore development features distinguishes itself from other

multicore development libraries such as OpenMP by offering both lower thread level

programming support along with the higher level parallel programming constructs

such as the C# Parallel class Parallel.For() and Parallel.ForEach() methods. In ad-

dition to a large number of multicore processing constructs, C# also includes a large

variety of concurrent data structures, queues, bags, and other thread-safe collections.

Using the multicore development features available in C#, common parallel pro-

14

gramming abstractions such as Fork-Join, Pipeline, Locking, Divide and Conquer,

Work Stealing, and MapReduce can be quickly implemented while drastically reduc-

ing project development timelines when compared to other multicore development

languages.

A strength of multicore development in C# is the simplicity with which paral-

lel programming abstractions can quickly be implemented. The following section

explains some of the primary types of parallel programming abstractions giving ex-

amples of how these abstractions can be implemented using the C# language.

2.4.1. Thread Safe Locking and Memory Barriers

The C# multicore development environment offers many types of locks for thread

synchronization during parallel processing. The “Lock” statement can be used to

protect critical sections of parallel C# code and is the most common form of barrier

used for thread-safety in C#. However, C# also offers great flexibility for “lock free”

parallel processing using the “Interlocked” class [47, 140]. The Interlocked class can

be used for the high performance, thread-safe, and atomic increment, decrement, or

exchange of variables. While developing sound lock-free processing strategies may be

more challenging, the interlocked class can perform magnitudes of order faster than

the expensive “Lock” operation.

In addition to the standard “Lock” command and Interlocked class, more special-

ized locking mechanisms are available in C#. The SpinLock class is much faster than

a regular lock. However, it never releases the CPU during locking and consumes more

CPU resources. This lock type should be used with caution to achieve high perfor-

mance in certain low-level locking situations where only one or two lines of code may

require a lock. The ReaderWriter class is used for locking a resource only when data

is being written and permits multiple clients to simultaneously read data when data

is not being updated [110].

15

2.4.2. Fork Join

Using the Fork-Join pattern, various chunks of work are “forked” so that each

individual chunk of work is executed asynchronously in parallel. After each asyn-

chronous chunk of work is completed, the parallel chunks of work are then “joined”

back together. For example, using this pattern, the Task.WaitAll() method can be

called “joining” any number of tasks. All of the individual tasks run simultaneously,

and none of them are returned to the caller until each of the individual tasks have

completed. This same pattern can be accomplished in multiple ways within C#.

Using tasks, parallel For and ForEach loops, or LINQ are just a few examples for

executing the Fork Join pattern.

2.4.3. Parallel Pipelines

In a pipeline scenario, there is typically a producer thread managing one or more

worker threads producing data. There is also a consumer thread managing one or

more worker threads which consume the data being created by the producer. While

a simple C# BlockingCollection provides the most basic support for exchanging data

between threads in a parallel pipeline, these architectures can quickly become very

complex when considering factors such as the speed differences between the producer

and consumer and notifications between managing threads when production and con-

sumption have started or completed. The BlockingCollection is typically used to man-

age the communication between the different producer / consumer threads in parallel

pipelines. Using the BlockingCollection’s GetConsumingEnumerable() method, con-

sumers can continue to wait for new work items until the producer has notified the

BlockingCollection that production has completed. In addition, bounded capacities

can be set to help manage memory and resolve speed differences between producers

and consumers.

16

The parallel pipeline can be taken one step further by executing any of the pro-

ducer / consumer processes simultaneously in parallel. Furthermore, the BlockingCol-

lection is thread-safe so no additional locking effort is required from the programmer

when calling its add() method using multiple threads. Parallel pipelines can rapidly

be established to perform independent processing tasks in parallel stages. As soon

as one intermediate unit of parallel work has been produced, it can immediately be

passed to additional downstream consumers for further processing.

2.4.4. Thread Pools and Work Stealing

In later versions of the .NET framework >= 4.0, tasks execute from the Task

Scheduler using a Task Scheduler Type. The ThreadPool not only maintains a global

queue, but a queue per thread where they can place their work instead of in the global

queues. When threads look for work, they first look locally and then globally. If no

work still exists, then threads are able to steal work from their peers [140]. While

most parallel calls from LINQ and the Parallel class (Parallel.For / ForEach) manage

their own thread pools, custom thread pools and task schedulers can be created when

needed.

2.4.5. Parallel Divide and Conquer

The most popular example of the divide and conquer algorithm is Quick Sort

which executes with a time complexity of O(n log n) using recursive calls to divide

sorting work into buckets until the bucket size becomes 1, which is implicitly sorted.

However, it is important to note that the Insertion Sort algorithm outperforms Quick

Sort for much smaller values of n. Figure 2.1 illustrates optimized example code

stopping the recursion and switching to Insertion Sort at an acceptable value for n.

Using C# QuickSort can be optimized to account for both the number of Par-

allel.Invoke() tasks executing at any given time and the size of n for each bucket.

17

static void QuickSort<T>(T[] data, int fromInclusive, int toExclusive) where T : IComparable<T>
{

if (toExclusive - fromInclusive <= THRESHOLD)
InsertionSort(data, fromInclusive, toExclusive);

else
{

int pivotPos = Partition(data, fromInclusive, toExclusive);
Parallel.Invoke(

() => QuickSort(data, fromInclusive, pivotPos),
() => QuickSort(data, pivotPos, toExclusive));

}
}

Figure 2.1: C# Parallel Quick Sort Switching to Insertion Sort at Smaller Bucket
Sizes. Code Courtesy [140].

When these thresholds are exceeded, the algorithm switches from parallel to serial

execution. However, it is possible for a serial execution to recursively switch back to

parallel at some point when the CONC_LIMIT is no longer exceeded. Figure 2.2 shows

this implementation using C#.

2.4.6. MapReduce and Spark

MapReduce processing provides an innovative approach to the rapid consumption

of very large and complex data processing tasks. The C# language is also very

well suited for MapReduce style processing. This type of processing is described

by some in the C# community as a more complex form of producer / consumer

pipelines [108] which was also previously discussed in Section 2.4.3. When compared

to these pipelines, MapReduce adds additional layers of error recovery, and the Map,

Reduce, and combiner stages in MapReduce exchange data using intermediate files

saved to disk. This allows individual stages to reside on multiple commodity hardware

machines. A more simplistic parallel MapReduce style pipeline can easily be created

in C# using many of the concepts and multicore development components previously

presented in this chapter.

18

static int CONC_LIMIT = Environment.ProcessorCount * 2;
volatile int _invokeCalls = 0;
public void QuickSort<T>(T[] data, int fromInclusive, int toExclusive) where T : IComparable<T>
{

if (toExclusive - fromInclusive <= THRESHOLD)
InsertionSort(data, fromInclusive, toExclusive);

else
{

int pivotPos = Partition(data, fromInclusive, toExclusive);
if (_invokeCalls < CONC_LIMIT)
{

Interlocked.Increment(ref _invokeCalls);
Parallel.Invoke(

() => QuickSort(data, fromInclusive, pivotPos),
() => QuickSort(data, pivotPos, toExclusive));

Interlocked.Decrement(ref _invokeCalls);
}
else
{

QuickSort(data, fromInclusive, pivotPos);
QuickSort(data, pivotPos, toExclusive);

}
}

}

Figure 2.2: C# Parallel Quick Sort Recurring to Serial Quick Sort Based the Number
of Concurrent Tasks Executing. Code Courtesy [140].

In more complex forms, MapReduce jobs are broken into individual, independent

units of work and spread across many servers, typically commodity hardware units,

in order to transform a very large processing task into something that is much less

complicated and easily managed by many computers connected together in a cluster.

Commodity hardware machines each provide additional processors and memory for

data processing when they are used together in a MapReduce cluster.

When a cluster is deployed however, additional programming complexity is in-

troduced. Input data must be divided up (mapped) across the cluster’s workers

(computers) in an equal manner that still produces accurate results and easily lends

itself to the aggregation of the final results (reduction). The mapping of input data

to specific cluster workers is in addition to the mapping of individual units of input

data work to individual processors within a single worker. Reduction across multiple

cluster workers also requires additional programming complexity.

19

In C#, thread-safe data collections such as the ConcurrentBag, BlockingCollec-

tion, and ConcurrentDictionary can be used to exchange data between the “map” and

“reduce” components of a MapReduce style pipeline. For example, consider the pro-

cess of counting words in a text document. First a “chunking” function is used to read

text from a file breaking all the text into smaller chunks which are “yield returned”

to downstream worker threads for further processing as they are produced. Next the

“map” function will divide each block of text into words in parallel. As words are

identified by individual threads, they are placed into the thread-safe Blocking Col-

lection for further downstream reduction processing. Figure 2.3 illustrates a “map”

function for mapping words from file text using thread-safe collections to exchange

data between the “map” and “reduce” functions.

public static ConcurrentBag wordBag = new ConcurrentBag();
public BlockingCollection wordChunks = new BlockingCollection(wordBag);
public ConcurrentDictionary wordStore = new ConcurrentDictionary();

public void mapWords(string fileText)
{

Parallel.ForEach(produceWordBlocks(fileText), wordBlock =>
{ //split the block into words

string[] words = wordBlock.Split(’ ’);
StringBuilder wordBuffer = new StringBuilder();

//cleanup each word and map it
foreach (string word in words)
{ //Remove all spaces and punctuation

foreach (char c in word)
{

if (char.IsLetterOrDigit(c) || c == ’\’’ || c == ’-’)
wordBuffer.Append(c);

}
//Send word to the wordChunks Blocking Collection
if (wordBuffer.Length > 0)
{

wordChunks.Add(wordBuffer.ToString());
wordBuffer.Clear();

}
}

});

wordChunks.CompleteAdding();
}

Figure 2.3: C# Map Function for Extracting Words from Text. Available at: [49]

20

The “reduce” function in this process identifies unique words and keeps track of

their frequencies. This is accomplished by using a thread-safe ConcurrentDictionary.

The ConcurrentDictionary is a high performance collection of key-value pairs for

which keys are managed using a hash table implementation which provides extremely

fast lookups / access to each key’s value. The ConcurrentDictionary also provides

a simple addOrUpdate() method which allows users to check for a key, add the key

when it does not exist, and update the key otherwise. Since we are only increment-

ing a counter here, the Interlocked.Increment() function is also used to ensure very

efficient threadsafe updates to each counter variable. Both the “map” and “reduce”

processes utilize C#’s Parallel.ForEach() function to perform MapReduce style pro-

cessing in Parallel. Figure 2.4 illustrates a reduce function for counting each unique

word produced by the mapping function in Figure 2.3.

public void reduceWords()
{

Parallel.ForEach(wordChunks.GetConsumingEnumerable(), word =>
{ //if the word exists, use a thread safe delegate to increment the value by 1

//otherwise, add the word with a default value of 1
wordStore.AddOrUpdate(word, 1, (key, oldValue) => Interlocked.Increment(ref oldValue));

});
}

Figure 2.4: C# Reduce Function for Counting Unique Words. Available at: [49]

Finally, the entire MapReduce style pipeline is tied together by one master process

which asynchronously executes the mapping function in the background while simul-

taneously performing the reduction function in the foreground to achieve the highly

parallel MapReduce style pipeline. This pipeline is, in fact, more efficient in some re-

gards to the standard MapReduce construct presented by Google [39] since the “map”

and “reduce” stages both share access to the same memory. Using shared memory,

this pipeline can begin “reduce” processing as soon as the first word is produced by

the map function. Figure 2.5 illustrates a master process which executes the map

21

function in a background thread while simultaneously executing the reduce function

to count unique words. To scale this pipeline across multiple processes and/or mul-

tiple commodity hardware machines, input data must may be divided into multiple

partitions. However, no intermediate file exchanges are required between the map,

reduce, and combiner stages.

public void mapReduce(string fileText)
{ //Reset the Blocking Collection, if already used

if (wordChunks.IsAddingCompleted)
{

wordBag = new ConcurrentBag();
wordChunks = new BlockingCollection(wordBag);

}

//Create background process to map input data to words
System.Threading.ThreadPool.QueueUserWorkItem(delegate(object state)
{

mapWords(fileText);
});

//Reduce mapped words
reduceWords();

}

Figure 2.5: C# Master Process Executing the “Map” and “Reduce” Functions [49]

The MapReduce style pipeline in Figure 2.5 resides on only a single machine using

multiple processors. As a result, it is currently limited by the amount of memory and

processors available to the current process where it is executing. However, input data

may be divided between multiple processes executed on one or more machines.

More recently, a new model of cluster computing ‘Spark’ reported performance

gains of 10x when compared to Hadoop’s MapReduce processing model [160]. In

addition, the Apache Spark platform claims performance gains up to 100x over

Hadoop Mapreduce when processing data in memory [2]. Spark uses map and reduce

steps similar to Hadoop’s MapReduce adding in-memory RDDs (Resilient Distributed

Datasets) which are data partitions that can easily be replaced when lost [160].

The performance gains achieved by Spark are similar to the multicore MapReduce

style processing pipeline implementations described in Chapter 4. By keeping data

22

from multiple map and reduce steps available in memory, large gains in performance

and parallelism are achieved. During traditional MapReduce, both the “Map” and

“Reduce” stages write data outputs to disk eliminating the opportunity to enhance

parallel processing by exchanging mapped items in memory immediately as they are

created.

2.4.7. Process Level Parallelism

In Windows, each thread is allocated part of the process address space which is

called the thread’s user mode stack. Each thread’s user mode stack is allocated space

for things like CPU register state, scheduling priority, resource usage accounting,

and “scratch storage” for things like passing function parameters, maintaining local

variables, and saving function return addresses [135]. Threads also have a kernel mode

stack which is used when a thread runs in kernel mode for things such as executing

system calls. This allows the thread to perform “Ring 0” operations without getting

page faults for accessing memory which does not belong to the parent process.

The basic kernel stack is about 24K on a 64-bit Windows machine [135], although

it could be as large as 48K depending on the function it was created for. Obviously,

repeatedly creating threads causes initial thread stack commits and other additional

allocations of memory on the process and thread stacks which eventually become

saturated resulting in memory errors. For example, Russinovich was only able to

create around 55,000 threads on a 2GB stack while there should have been room

for approximately 89,000 threads when considering a 24K thread stack size [135]. In

addition, once threads begin using virtual memory they are no longer created and

managed efficiently.

Since some of the parallel constructs in C# such as Parallel.For and Parallel.ForEach

manage their own thread pools, it can be complicated or impossible to flood pro-

cessors to an appropriate level using only a single process. Furthermore, dividing

23

parallel workloads between additional processes can drastically reduce the number of

threads contending for access to the same thread-safe resources which are protected

by locking, memory barriers, or wrapped within a thread-safe collection. Inter-process

communication can also be very expensive and cumbersome.

However, I demonstrate that it is certainly possible to produce independent pro-

cessing workers for the purposes of machine learning which require no communication

between any number of dedicated processes. While there is not much literature on

process parallelism using C#, my own research has proven very successful results

when utilizing multiple processes within MapReduce style parallel pipelines for the

purposes of machine learning. Utilizing these same concepts, it is also possible to

divide work between any number of commodity hardware machines which have ac-

cess to the same centralized disk space such as network attached storage (NAS). Such

processing workers are highly efficient since all map and reduce stages have access to

the same shared memory on a single device which greatly increases parallelism.

2.5. A Framework for Parallel Machine Learning

Machine learning involves the extraction of structured or unstructured input data

from various data sources and transforming the raw data into a format suitable for

performing subsequent training and/or classification processing. During training,

descriptive patterns within the input data are identified using a consistently applied

aggregation method, which typically collects descriptive data and statistics for data

of known categories or classes. During classification, data of unknown categories or

classes are used as input. The same consistently applied aggregation method identifies

descriptive patterns within the input data for comparison and classification against

one or more known classes within the machine learning system.

24

I now present a highly parallel data processing implementation for the purposes

of machine learning comprising the distribution of input data using a consistently

applied MapReduce style aggregation method and classification function across mul-

tiple processors and disks to perform simultaneous machine learning computations,

while taking advantage of increased memory, reduced disk I/O, and the combined

processing power of all participating computing devices.

Within this framework, I define two key terms: map reduction aggregation and

classification metric function. Map reduction aggregation is used to describe any

consistently applied aggregation method used during machine learning to extract de-

scriptive data and possibly related statistics from raw input data for the purposes

of training or classification during machine learning. For example, during text pro-

cessing, words may be extracted as “descriptive data” for a document, and word

frequencies may be counted as the “related statistic”. The map reduction aggregation

process is highly parallel and utilizes shared memory across all processing stages to

enhance parallelism.

A classification metric function is used only during classification processing to

make comparisons between input data and known classes within a machine learning

system. The classification metric function is not always a “metric” and could be a

score or any other statistic devised to make an accurate classification. For example,

common classification metric functions used are Jaccard, Cosine, Manhattan, and

Euclidean distance or similarity. However, the classification metric function is not

limited to only distance or similarity metrics and other scores such as the tf − idf

(Term Frequency - Inverse Document Frequency) may be used.

The framework includes self-contained training and classification worker processes

to efficiently consume input data during machine learning. Each training and classifi-

cation worker utilizes shared memory during all stages of map reduction aggregation

25

and classification metric function processing to rapidly exchange and process interme-

diate data during machine learning. These self-contained training and classification

workers also scale well on multiple commodity hardware machines when used in a

machine learning computing cluster. Machine learning clusters avoid the use of tradi-

tional MapReduce processing overheads such as: intermediate files to exchange data

between processing steps, sorting intermediate file data, or relying on expensive inter-

process communication techniques to divide processing tasks between the numerous

worker processes.

The Collaborative Analytics Framework was designed with each of these challenges

in mind to produce a novel method for parallel machine learning when using various

forms of big data as input.

2.5.1. The Collaborative Analytics Framework for Parallel Machine Learning

The Collaborative Analytics Framework for Parallel Machine Learning, subse-

quently referred to as the “framework”, is a flexible framework for rapidly learning

and classifying very large volumes of input data in parallel. It provides rapid paral-

lel processing, learning, and classification of both structured and unstructured data,

and allows programmers to create and deploy application specific map reduction ag-

gregation methods and classification metric functions which are described in great

detail in Section 2.5.2 and Section 2.5.3. The framework is implemented using the

C# programming language which allows for a wide variety of multicore development

alternatives and a rapid project implementation.

To guide the reader, the remainder of this chapter uses a “toy” illustration of

web document de-duplication and classification using noun n-grams which are one or

more consecutive nouns occurring in a document’s text. This helps to compare at each

stage the benefits of the framework to machine learning frameworks using traditional

MapReduce style processing. The framework utilizes both training and classifica-

26

tion workers which take advantage of access to shared memory during all processing

stages. Each worker is self-contained, and multiple workers can be clustered together

to create a Collaborative Analytics Machine Learning Cluster. Training and classifi-

cation workers are processes intended to execute on commodity hardware machines.

Any number of training and classification worker processes may be executed on a

single machine to enhance process level parallelism and utilize additional processing

resources on the target machine. Multiple commodity hardware machines may also

be deployed to execute any number of training and classification workers as part of a

single Collaborative Analytics Machine Learning Cluster.

During traditional MapReduce, both the “Map” and “Reduce” stages write data

outputs to disk eliminating the opportunity to enhance parallel processing by ex-

changing mapped items in memory immediately as they are created. The framework

utilizes shared memory during all map reduction aggregation stages to achieve optimal

parallel processing benefits while machine learning. Strand combines Map Reduction

Aggregation with a Classification Metric Function to produce a novel framework for

parallel machine learning.

2.5.2. Map Reduction Aggregation

The purpose of map reduction aggregation within the framework is to rapidly pre-

pare and process input data during machine learning in parallel. I now compare map

reduction aggregation to more traditional MapReduce style processing for the benefit

of understanding the framework’s advantages. Map reduction aggregation includes a

preliminary map stage, any number of required intermediate map or combiner stages,

and a reduce stage. In traditional MapReduce, a combiner stage is simply an interme-

diate or semi-reducer that further processes data prior to the final reduce stage [66].

In the framework, all stages required for map reduction aggregation processing are

self-contained within a training or classification worker which allows each processing

27

stage access to the same shared memory at all times during machine learning. This

is highly advantageous when compared to other traditional forms of MapReduce.

Figure 2.6: Google’s Traditional MapReduce Execution Overview. Courtesy of [39]

Google’s traditional MapReduce execution overview is illustrated in Figure 2.6.

The following steps comprise the typical MapReduce model [39]:

1. Input data is split into multiple pieces which are managed by a master process.

2. Next, worker processes await either map or reduce tasks provided by the master.

3. Specific operations for both the map and reduce procedures are specified by the

user.

4. The master monitors each map task’s successful completion and notifies reduce

workers of the map file output locations.

28

5. Intermediate files on local disks are required between each of the map, combiner,

and reduce stages executed for traditional MapReduce.

6. When the reduce stage reads in mapped files from disk, the data is also sorted

since a large number of keys may map to a single reduce task.

7. The reduce function processes each sorted map item according to the user spec-

ified reduce operations writing results to a separate final result file for each

reduce task executed.

8. Finally, the master returns control to the calling program once all reduce steps

have successfully completed.

The properties of Google’s traditional MapReduce model [39] are:

1. Fault Tolerance - Both master and slave workers are monitored and restarted

after failures.

2. Processing Locality - Map and reduce stages are typically processed on the

same physical machine where the data resides when possible.

3. Distributed File System - Very large input files can be mapped across many

commodity hardware machines.

4. Scalability - Additional commodity hardware machines can be added to a

computing cluster with little effort.

The framework’s map reduction aggregation methods take advantage of the sim-

plistic parallelism constructs afforded by the MapReduce model while avoiding much

of the overhead associated with intermediate file disk I/O, sorting, and inter-process

communication between the master and worker processes located on different com-

modity hardware machines.

29

Within the framework, a map reduction aggregation method specifies how targeted

input data will be aggregated within the current system during training and classifi-

cation worker processing. Targeted input data is consistently dissected by mapping

and optional combiner processes into individual, independent units of intermediate

work typically comprising consistently mapped data keys and values that are con-

ducive to simultaneous parallel reduction processing. The reduce method continually

and simultaneously aggregates the mapped data keys and values by eliminating the

matching keys and aggregating values consistent with the specified reduce operations

for all matching keys which are encountered during reduce processing.

All map, combiner, and reduce stages are self-contained within a single user spec-

ified map reduction aggregation method allowing access to several data structures

in shared memory between all processing stages. The user specified map reduction

aggregation method and classification metric functions operate within any number of

training and classification workers to scale as required by the user or machine learning

task at hand.

Figure 2.7: Simple Map Reduction Aggregation in the Collaborative Analytics Frame-
work using only a Map and Reduce Stage.

30

Figure 2.7 illustrates a simple map reduction aggregation pipeline within the

framework. Raw input data is provided to the map stage which divides the input

data into keys as instructed by the map operations. The map operations may also

calculate the local frequencies of keys encountered by individual worker threads dur-

ing mapping. Each key and associated value is immediately passed to a thread safe

data structure where the reduce stage workers simultaneously process each “mapped”

item summarizing unique key values according to the specified reduce operations.

Shared memory between all stages eliminates the need for any required disk I/O

to store intermediate file results between processing steps. During training, one or

more associated classes are passed along during each processing stage. This allows

the framework to process multiple sets of input data from different classes in parallel

simultaneously.

Figure 2.8: Words Extracted from Sentences using Map Reduction Aggregation.

Figure 2.8 illustrates the process for tokenizing and counting unique words dis-

played on a webpage using the simple map reduction aggregation pipeline shown in

Figure 2.7. During the map stage, input data is split into multiple segments. Each

segment is tokenized into individual words in parallel. Tokenized word keys are im-

mediately placed into a single thread safe collection by the mapping worker threads.

Using this scenario, no values are required during the map stage. However, values

could be used in certain implementations to provide intermediate word frequencies

within each input data split. Simultaneously, reduce stage workers are consuming

each word from the thread safe collection and calculating the frequency for each

unique word identified.

31

In the Figure 2.7 illustration, only one map stage is used prior to reduce pro-

cessing. However, some map reduction aggregation methods may include multiple

map, combiner, and reduce stages to facilitate increased parallelism, produce final

mapping and/or reduction values, or to fulfill other requirements of specific map

reduction aggregation implementations. For example, a multi-stage map reduction

aggregation pipeline implementing minhashing is presented later in Section 2.5.4 and

shown in Figure 2.11. Section 2.5.2.1 illustrates a multi-stage map reduction aggre-

gation pipeline using natural language processing to extract noun phrases from web

documents in Figure 2.9.

In certain framework embodiments, only keys are required during map and/or re-

duction processing since the value for each encountered key is always assumed to be

equal to 1, or a reduction value can be calculated using only the key itself. However,

in other embodiments, a value field may be necessary to maintain how many times

a unique key occurred, a frequency value weighted by the key length, an aggregated

series of value transformations based on a particular key’s general importance within

a given system, or for capturing any other value modification functions consistent

with any number of application specific map reduction aggregation steps. The web

document de-duplication and classification system previously described demonstrates

how the framework may require multiple processing stages for a particular Collab-

orative Analytics machine learning embodiment. This also becomes evident when

discussing locality sensitive hashing in Section 2.5.4 and the STRAND application in

Chapter 4 which both demonstrate additional multi-stage map reduction aggregation

pipeline scenarios. Longer keys can also be hashed to reduce the memory footprint

and increase processing speed within a given system using locality sensitive hashing

techniques such as minhashing during map reduction aggregation. This is discussed

in detail in Section 2.5.4.

32

2.5.2.1. Map Reduction Aggregation for Web Document De-duplication and Clas-

sification

Figure 2.9: Noun n-grams Extracted from Sentences using Map Reduction Aggrega-
tion.

Figure 2.9 shows a multi-stage map reduction aggregation pipeline for extracting

noun n-grams from web documents. When considering web document de-duplication

and classification using noun n-grams, a typical map stage accepts the text displayed

on a webpage as input mapping each webpage’s text into sentences using a natural

language processing engine. During mapping, multiple worker threads use the natural

language processing engine to break webpage text into sentences and provide a part of

speech tag for each word within each sentence. Tagged sentence keys are immediately

accessible to combiner stage worker threads which identify all nouns and noun phrases

within each sentence. The combiner step places each noun or noun phrase identified

into a single thread safe collection accessible to the reduce step worker threads which

simultaneously identify unique nouns and noun phrase keys summarizing their values

concordant with the specified reduce step operations.

33

Figure 2.10: Noun Phrase Data during Map Reduction Aggregation Stages.

In Figure 2.10, input data is shown at each stage of map reduction aggregation.

The map stage outputs illustrate tokenized sentences with each word token including

part of speech tags provided by the SNoW tagger [65, 134]. The combiner stage

identifies each word tagged as a noun (NN, NNP, NNS, NNPS) [65] capturing uni-

gram, bi-gram, and tri-gram noun phrases within each sentence. In the combiner

step, nouns and noun phrases appearing more than once within a sentence will have

a frequency greater than 1. The reduce step, produces a list of each unique noun and

noun phrase summing the frequencies of the individual combiner stage values.

During traditional MapReduce, the first map stage writes all results to disk where

a combiner or reduce stage locates them as input and re-loads each map file into

memory for further combiner and/or reduce stage processing. This is highly ineffi-

cient compared to the shared memory exchanges which occur within map reduction

aggregation. In our web document example, the “keys” in the first map stage are sen-

tences, and no values are required for this stage since the sentences will be processed

further and divided into noun phrases. The “keys” in the combiner stage are unigram,

bi-gram, and tri-gram noun phrases. The “values” in this stage may be the frequency

of each unique noun or noun phrase found within a webpage document, document

segment, or sentence depending on the specified combiner operations. Finally, the

34

“keys” for the reduce stage are each unique noun and noun phrase known to the

system, and the “values” are the frequency that each unique noun and noun phrase

within the system occurs. However, a more naive system may use a single map and

reduce step, mapping each web document into word or letter tri-grams and using the

reduce stage to count each unique tri-gram occurrence. The naive implementation

avoids the considerable overhead of breaking words into sentences and identifying the

part of speech for each word within each sentence during natural language processing,

but it will also create many more keys during the reduce stage since no words are

eliminated.

2.5.3. The Classification Metric Function

The classification metric function is a consistently applied similarity, distance,

or other statistical measure used to compare two sets of map reduction aggregation

outputs. These outputs could be produced by a training or classification worker, or

they could be contained within the training data structure and represented as one or

more known classes within the system. The training data structure is described in

detail within Section 2.5.5 and illustrated in Figure 2.12.

Classification metric functions using distance or similarity metrics that only re-

quire the determination of the intersection and union between two sets, such as Jac-

card similarity or distance, may only require the use of map reduction aggregation

output keys, not values, during classification metric function calculations since the

frequency of each word is not required. However, a single framework may still main-

tain both map reduction aggregation output keys and values within the training data

structure for flexibility of use and in order to accommodate multiple distance or simi-

larity metric calculations. For instance, the Cosine similarity or distance metric which

uses a vector of frequencies created from the map reduction aggregation output values

could also be supported as a secondary classification metric function within such a

35

system.

Other distance or similarity metrics may also be used which require both the keys

and values produced by the map reduction aggregation process. For example, the

length of each key may be used to weight each value when longer matching keys are

considered to be more significant matches than shorter ones. Another variation could

reference each key within a lookup table to determine a predefined key weighting used

during value transformations. A detailed discussion of classification metric functions

supported by a single Collaborative Analytics Training Data Structure are presented

in Section 2.5.5.

Certain framework implementations may include classification metric functions

which occur in tandem to map and reduce operations. While map workers are per-

forming mapping specific operations, transitional mapping outputs are placed into

centralized, thread-safe storage areas accessible to reduction operation workers. Si-

multaneously, reduction operation workers are consuming the transitional mapping

output, reducing the keys, and integrating the values consistent with the specified

reduction operations.

Simultaneously, transitional classification metric function inputs are placed by the

reduction workers into the centralized, thread-safe storage areas accessible to a plural-

ity of classification metric function workers. These workers consume the classification

metric function inputs performing one or more distance and/or similarity calculations

concordant with the specified classification metric function operations. Transitional

classification metric function inputs may comprise matching keys between a input

data query and one or more known classes including optional frequencies when re-

quired by the classification metric function.

The framework may also process input data with no known categories or classes

during classification. In these instances, the classification metric function produces

36

a pairwise distance matrix and implements a clustering method such as k-means or

hierarchical agglomerative clustering to process and cluster the transitional distance

or similarity measure outputs produced. The resulting clusters can then be used as

the assigned unsupervised training classes.

In the web document de-duplication and classification example, noun n-grams are

extracted from the input data for either de-duplication or classification against other

known web document classes within the training data structure.

In this scenario, we are answering one of two questions:

1. Has the document been seen before?

2. How similar is the document to all other known documents within the system?

Using a single training data structure, multiple classification metric functions

may be supported. Jaccard Similarity is calculated between a noun n-gram query

set and each noun n-gram class set within the training data structure using only the

intersection divided by the union of the two noun n-gram sets. No frequency values

are required for this similarity measure. The Jaccard similarity between two sets X

and Y is defined as SJ(X, Y), where:

SJ(X, Y) =
|X ∩ Y |
|X ∪ Y |

Weighted Jaccard Similarity is also supported when the frequency values contained

in the nested categorical key-value pair collection are taken into consideration [76].

The Weighted Jaccard similarity between two multisets with frequencies xxx and yyy is

defined as SWJ(xxx,yyy), where:

SWJ(xxx,yyy) =

∑
i min(xxxi, yyyi)∑
i max(xxxi, yyyi)

37

Cosine Similarity is supported using the two frequency vectors given by the union

and associated frequencies for the two noun n-gram sets. First the product for each

frequency pair is summed to calculate the dot product. Next, the square of each fre-

quency within both frequency vectors are summed to calculate the two the respective

magnitudes. The Cosine Similarity for two frequency vectors xxx and yyy is defined as

Scos(xxx,yyy), where:

Scos(xxx,yyy) =
xxx · yyy

‖ xxx ‖‖ yyy ‖
=

∑n
i=1xxxi · yyyi√∑n

i=1(xxxi)2 ·
√∑n

i=1(yyyi)
2

(2.1)

The dot product and both magnitudes are calculated using a single pass of the

union and associated frequencies for the two noun n-gram sets. Finally, Cosine Sim-

ilarity is calculated using the final equation.

Now, consider the logarithmically scaled term frequency tf which contains the

total number of times a particular noun n-gram n is contained in the web document

D. The logarithmically scaled term frequency is defined as tf(n,D), where:

tf(n,D) = 1 + log (Fn,D)

Next, consider the logarithmically scaled inverse document frequency given by

the function idf . The total number of classes in the system are given by N , and the

inverse document frequency is obtained by dividing the total number of classes in

the system by the number of classes where a particular noun n-gram appears. The

count of any noun n-gram’s nested categorical key-value pair entries represents the

number of web documents where a particular noun n-gram appears. A value of 1 is

sometimes added to the denominator of the inverse document frequency equation to

avoid division by zero for missing terms. However, the framework typically excludes

terms that do not exist in the training corpus C. The logarithmically scaled term

frequency is defined as idf(n, C), where:

38

idf(n, C) =
N

|{c ∈ C : n ∈ c}|

The term n represents a particular noun n-gram within a document c while N

represents the total number of documents within the system .

Finally, the Term Frequency-Inverse Document Frequency is defined as tfidf(n,D, C),

where:

tf − idf(n,D, C) = tf(n,D) · idf(n, C)

During classification metric function processing, a summarization step is required

to add up tf − idf scores for each term within each class. For example, each noun

n-gram within a query document would supply an individual tf − idf score for each

known document within a system. The classification metric function then calculates

the total of all tf − idf scores within each document class. The document class with

the highest tf − idf total is then considered most similar to the query document in

question.

These are just a few examples of classification metric and scoring functions avail-

able when using only a single training data structure. Many other classification

metric functions are possible when different map reduction aggregation techniques

are utilized. For example, a more efficient and performance optimal classification

metric function becomes available when minhash signatures are created during map

reduction aggregation as discussed in Section 2.5.4.

2.5.4. Lossy Compression Using Locality Sensitive Hashing

Locality sensitive hashing is utilized within the framework to drastically reduce

the amount of storage required for high capacity map reduction aggregation and

classification metric function operations. Map reduction aggregation requires multiple

39

pipeline stages when a locality sensitive hashing engine is deployed.

Figure 2.11: Map Reduction Aggregation using Minhashing.

In Figure 2.11, the framework uses a more complex map reduction aggregation

pipeline including an additional combiner step to facilitate minhashing. Minhashing

is a form of lossy data compression used to remove a majority of the keys produced

during stage one mapping by selecting the smallest value produced for each of a family

of random hashing functions in order to create a much smaller minhash signature.

During stage one of the map reduction aggregation method shown in Figure 2.11,

transitional outputs are placed into centralized, thread-safe storage areas accessible to

minhash operation workers. In stage 2, a pre-determined number of distinct hashing

functions are then used to hash each unique key produced during the stage one map

operation one time each. As the transitional keys are repeatedly hashed, only the

minimum hash value for each of the distinct hash functions are retained across all

keys. When the process is completed only one minimum hash value for each of the

distinct hash functions remains in a collection of minhash values which represent the

unique characteristics of the learning or classification input data within a minhash

signature.

Minhash collections may also be consolidated or further reduced by storing each

minhash signature in a partitioned collection of nested categorical key-value pairs.

40

The training data structure in Figure 2.12 is designed in this manner. The training

data structure’s nested key value pairs are partitioned or sharded by each distinct

hash function using a distinct hash function id. For example, when the minhashing

process uses 100 distinct hash functions to create minhash signatures, the training

data structure is divided into 100 partitions. All unique minhash keys created by hash

function 0 are stored within partition 0 of the training data structure. All unique

minhash keys created by hash function 99 are stored in partition 99.

Figure 2.12: A Collaborative Analytics Partitioned Training Data Structure.

Figure 2.12 shows a partitioned framework training data structure where minimum

hash values act as the “key” in the nested “categorical” key-value pair collection. Each

minhash key contains as it value a collection of the classes which are associated with

that key in the system. This collection of classes represents the nested categorical

key-value pairs collection. Each nested categorical key-value pair contains a known

class as its key and a frequency, weight, or any other numerical value which represents

the importance of the association between a particular class and the minhash value.

41

This numerical description value is typically created by the reduction method, and

the number of nested categorical key-value pair entries can also vary between the

individual minhash key entries within the entire collection. The categorical key-value

pair collection is nested to support a single minhash value belonging to more than

one class. However, a simpler structure can be used in systems which only support

one class association for each minhash key.

Map reduction aggregation could be performed on any number of input data col-

lections and reduced into a single nested minhash categorical key-value pair collection

for the purpose of performing a combined training or classification. For example, mul-

tiple training data structures are produced in parallel by multiple training workers

within a Collaborative Analytics computing cluster and then consolidated. Once

the minhash signature has been created, the classification metric function is applied

to calculate similarity or distance measures between the input data’s signature and

known classes within the training data structure for the purposes of classification.

While other framework processing pipelines may use any number of classifica-

tion metric functions, pipelines which utilize minhashing typically only deploy the

Jaccard similarity or distance metric which is approximated by intersecting two sets

of minhash signatures where longer signatures provide more accurate Jaccard simi-

larity or distance approximations [129]. Class frequencies may be used to produce

other Jaccard Index variations such as Weighted Jaccard Similarity [76]. However,

large performance gains are achieved using binary classification techniques where no

nested categorical frequency values or log based calculations are required during clas-

sification metric function operations. In the binary minhash classification approach,

minhash signature keys are simply intersected with the minhash keys of known classes

to calculate similarity. This is demonstrated with great success when classifying gene

sequence input data in Chapter 4.

42

Using the example of web document de-duplication and classification, the total

number of noun n-grams produced when processing millions of web documents quickly

becomes unfeasible to store. Instead, each of the noun n-grams are now sent through

a family of random hashing functions to create a minhash signature. The minhash

signature represents the smallest value produced by each individual hashing function

utilized. Each noun n-gram located within a webpage is hashed by each hashing

function and only the minimum values for each hashing function are retained as part

of the minhash signature. A webpage document with 10,000 noun n-grams may be

reduced to only 100 integer minhash values when 100 hashing functions are used to

create the minhash signature. Likewise, the training data structure is divided into

100 partitions dedicated to storing training data for each of the 100 unique hashing

functions. This increases parallelism by reducing contention between keys being added

to a single collection during training. In addition, the same key produced by two

different hash functions will have two different meanings and must be accommodated.

Compression rates greater than 98% are achieved using minhashing to reduce the

number of words created from a single gene sequence in Chapter 4.

2.5.5. Applying The Collaborative Analytics Framework to Machine Learning Tasks

While traditional MapReduce is commonly used for multicore machine learning

tasks [30, 61, 62], researchers [60, 101] now recognize the need for parallel machine

learning frameworks which strike a balance between the high-level parallel abstrac-

tions like MapReduce and the low-level multicore development tools discussed in

Section 2.3.

Gillick et. al. states that an ideal MapReduce style parallel machine learn-

ing implementation should provide shared memory to all map tasks on a compute

worker [62]. The framework takes this idea one step further by exposing shared mem-

ory for all processing stages required to create a consistently applied data preparation

43

and aggregation method for the purposes of training or classification during machine

learning. In addition, the framework’s self-contained training and classification work-

ers are easily replicated to scale a machine learning process on any size computer or

on any number of commodity hardware machines operating within a cluster.

Figure 2.13: Collaborative Analytics Training and Classification Workers

In Figure 2.13, map reduction aggregation output of known classes are consoli-

dated or further reduced by storing all outputs using the same map reduction ag-

44

gregation method in a single collection of nested key-value pairs where the key for

each key-value pair maps to a second or nested collection of “categorical” key-value

pairs as its value. This is called the training data structure. The nested collection of

categorical key-value pairs for each key provides a numerical description of that key

across any number of categorical keys (i.e. known classes). The training data struc-

ture may also be partitioned to support more complex map reduction aggregation

outputs or to enhance parallelism during machine learning. A partitioned training

data structure was also presented in Figure 2.12 for the purpose of supporting lossy

compression using minhashing. The training data structure is updated during train-

ing worker processing and read during classification worker processing to apply the

specified classification metric function operations.

In the web document de-duplication and classification example, unique noun n-

grams are summarized during map reduction aggregation calculating the frequency

of each unique noun n-gram identified. The web documents associated with each

noun n-gram are made available to the reduce step and act as the associated classes

in this example. In the naive approach, the training data structure contains a single

partition where each unique noun n-gram key contains a nested collection of web

document classes and the associated frequency for a particular noun n-gram within

each web document class as the nested categorical key-value pair collection. However,

when minhashing is used, an additional combiner step is added to hash each noun

n-gram one time retaining the minimum hash value for each unique hashing function

used. These values make up the minhash signature and are stored in the partitioned

training data structure.

During training, each noun n-gram entry is looked up within the training data

structure. New training data structure entries are created for new noun n-grams while

the frequency value is incremented when a noun n-gram key already exists. Multiple

45

worker threads are operating at each stage of the machine learning pipeline in parallel.

The map, combiner, and reduce stages within the map reduction aggregation stage

operate simultaneously exchanging intermediate data using shared memory within

each self-contained training worker. This is highly advantageous since all disk I/O is

eliminated between each of the map, combiner, and reduce stages. When processing

very large volumes of input data, multiple training or classification workers are de-

ployed to reduce processing times and add additional processing hardware within a

Collaborative Analytics Cluster. This is discussed further in Chapter 4.

During classification, the same map reduction aggregation method used during

training processes the classification input data. However, a classification metric func-

tion also calculates the distance or similarity between the map reduction aggregation

outputs and one or more classes stored within the training data structure. When

making a multi-class prediction, the class with the highest similarity or the lowest

distance is selected. However, the framework is also capable of providing the similar-

ity or distance scores calculated for each of the individual classes. This is useful when

input data may align with multiple classes. For example, a lengthy gene sequence

may contain multiple mutation classes known by the framework.

Figure 2.13 also shows a Collaborative Analytics classification worker. All stages

of map reduction aggregation appear identical to the training worker above. This

is critical since accurate classifications are only made when the summarized data

produced by map reduction aggregation for training and classification are created

in an identical manner. Outputs produced from the final reduce step are looked

up within the training data structure locating matching keys and associated class

frequencies as needed. The map reduction aggregation output is processed according

to the classification metric function operations in order to determine a classification

score for one or more classes contained within the training data structure.

46

2.5.6. Managing Speed Differences Between Pipeline Producers and Consumers

The framework uses C# Blocking Collections to manage the exchange of map

reduction aggregation pipeline data placed in transitional output storage areas. The

blocking mechanism manages the potential differences in the production and con-

sumption speeds between map reduction aggregation and classification metric func-

tion operations. Once the transitional blocking mechanism is notified that transitional

output production has started, production workers produce transitional outputs while

consumption workers consume the transitional outputs until the blocking mechanism

is notified by the production process that production of all transitional outputs has

completed.

Consumption workers also continue working until production has completed and

all transitional outputs have been consumed. In the event that there are no transi-

tional outputs to consume and production has not completed, the blocking mechanism

allows consumer worker threads to “block” or wait until additional transitional out-

puts are produced. Memory consumption can also be managed within the blocking

mechanism by setting a pre-determined production capacity. When the production

capacity is exceeded, the blocking mechanism allows production workers to stop pro-

duction and “block” or wait until additional transitional outputs are consumed and

the transitional output count falls back below the pre-determined production capac-

ity. Any framework process creating transitional outputs including map methods,

reduction methods, map reduction aggregation, and classification metric functions

could act as producers and/or consumers interacting with multiple blocking mech-

anisms participating in multiple production and consumption relationships within a

particular framework pipeline.

47

2.6. A Framework for Parallel Feature Extraction

Concepts and techniques similar to those implemented in the Collaborative Ana-

lytics Framework can also be used to extract features in parallel for both supervised

and unsupervised machine learning processes. In fact, this would be equivalent to

creating a customized map reduction aggregation method used directly as input for

another machine learning package, or using the classification metric function to create

output other than the training data structure previously described. For example, a

map reduction aggregation pipeline could be designed to extract the displayed text

from web pages while distance calculations produced by a classification metric func-

tion are used to create a pairwise distance matrix which reflects the Jaccard Distance

between all websites based upon bags of sentences displayed on each website.

A distance matrix is required as input for some clustering algorithms such as

Hierarchical Agglomerative Clustering [45]. Yet another use case might be defining

a custom map reduction aggregation method for extracting vertical and horizontal

luminosity histograms from images, and creating a custom classification metric func-

tion using such image features to calculate the similarity or distance between images

in order to produce a pairwise distance matrix used as input for image similarity

clustering.

I describe detailed Cybercrime related parallel feature extraction implementations

for creating feature distance matrices in Chapter 3. Implementations for extracting

Bioinformatics related features in parallel are also covered in Chapter 5. In order to

provide a more concrete example of implementing a framework for parallel feature

extraction, I will now present a method for the extraction of luminosity histogram

features from images.

48

2.6.1. Extracting Luminosity Histogram Features From Images in Parallel Using

C#

The term “Luminance” is used to describe the luminous intensity per unit area

of light as a photometric measure [155]. Luminance describes how much light passes

through a given area and falls within given solid angle [155]. For a digital image, this

is typically determined at the pixel level. Relative luminance follows this definition,

but it normalizes its values to 1 or 100 for a reference white [156].

When separated into RGB components, a luminosity histogram acts as a very

powerful machine learning fingerprint for an image. Since these type of histograms

only evaluate the distribution and occurrence of luminosity color information, they

can handle affine transformations quite well [123]. In simple terms, it very easy to

separate the RGB components of an image using C#. In fact, using the “unsafe”

keyword one can rapidly calculate the relative luminance of each pixel within an

image [17,111]. For this project, I was able to quickly adapt the luminosity histogram

feature extraction program contained within the open source Eye.Open library [111]

to provide parallel feature extraction using the concepts previously described.

2.6.2. Extracting the RGB Channels

Once an image has been processed, both vertical and horizontal luminosity his-

tograms are extracted and retained for similarity calculations between images. Fig-

ure 2.14 shows each pixel’s red, green, and blue channels being isolated for use within

the luminosity calculation using C#. Images can quickly be compared for similarity

using the similarity function shown in Figure 2.15. This classification metric function

calculates the deviation between two histograms using the weighted mean. Once both

the vertical and horizontal similarity have been calculated, the maximum or average

vertical / horizontal similarity is retained for each image pair to create a pairwise

49

image distance matrix.

unsafe
{

var imagePointer1 = (byte*)bitmapData1.Scan0;

for (var y = 0; y < height; y++)
{

for (var x = 0; x < width; x++)
{

var blu = imagePointer1[0];
var green = imagePointer1[1];
var red = imagePointer1[2];

int luminosity = (byte)(((0.2126 * red) + (0.7152 * green)) + (0.0722 * blu));

horizontalProjection[x] += luminosity;
verticalProjection[y] += luminosity;

imagePointer1 += 4;
}

imagePointer1 += bitmapData1.Stride - (bitmapData1.Width * 4);
}

}

Figure 2.14: Using the RGB Channels to Calculate Luminosity for each Pixel in an
Image in C#. [111]

50

private static double CalculateProjectionSimilarity(double[] source, double[] compare)
{

if (source.Length != compare.Length)
{

throw new ArgumentException();
}

var frequencies = new Dictionary();

//Calculate frequencies
for (var i = 0; i < source.Length; i++)
{

var difference = source[i] - compare[i];
difference = Math.Round(difference, 2);
difference = Math.Abs(difference);

if (frequencies.ContainsKey(difference))
frequencies[difference] = frequencies[difference] + 1;

else
frequencies.Add(difference, 1);

}

var deviation = frequencies.Sum(value => (value.Key * value.Value));

//Calculate "weighted mean"
//http://en.wikipedia.org/wiki/Weighted_mean
deviation /= source.Length;

//Maximize scale
deviation = (0.5 - deviation) * 2;

return deviation;
}

Figure 2.15: Use RGB Channels from Image to Calculate Luminosity for each Pixel
in an Image. [111]

There are many ways to extract features from images and create image finger-

prints. Many people recommend other approaches such as taking 2D Haar Wavelets

of each image [86]. One could easily extend our approach to to use Haar features of

any size or degree. In addition, higher performance options such as using minhashing

with tf-idf weighting have also been implemented [33]. Haar features have been suc-

cessfully used for more complex Computer Vision tasks such as detecting faces within

an image [38] using C#.

2.6.3. Creating the Distance Matrix in Parallel

The pairwise distance matrix is required as input when using some Hierarchical

51

/// Rapidly generate all required matrix matches in the background for processing.
/// (this allows a much more balanced execution of Parallel.ForEach on all matches)
/// Yeild return passes each match to parallel foreach in createPairwiseMatches()
/// as they are produced.
///

private IEnumerable generateMatches()
{

for (int r = 1; r < filePaths.Length; r++)
{

//for each column less than the current row
for (int c = 0; c < r; c++)

yield return new PairwiseMatch(r, c);
}

}

/// Parallel asynchronous background process to create all pairwise matches for a
/// given matrix, extracting image features one time (as required).
///

public void createPairwiseMatches(string inputDirLoc)
{

Parallel.ForEach(generateMatches(), match =>
{

match.projectionR = getImageFeatures(filePaths[match.rowIndex]);
match.projectionC = getImageFeatures(filePaths[match.colIndex]);
MatrixMatches.Add(match);

});

MatrixMatches.CompleteAdding();
}

Figure 2.16: Stage One Mapping of all Pairwise Matches.

Agglomerative Clustering functions within R [45]. In order to create this matrix in

parallel, a three stage parallel pipeline is used. First, pairwise image matches are cre-

ated using a C# yield return enumeration. Each time the generateMatches() function

in Figure 2.16 produces a pairwise match, processing stops and “yield returns” each

match to the createPairwiseMatches() function’s Parallel.ForEach loop. Figure 2.16

shows the relationship between these two functions which is executed in a background

process during the distance matrix creation.

The createPairwiseMatches() function shown in Figure 2.16 above, extracts fea-

tures in parallel mapping images to vertical and horizontal luminosity histograms.

Furthermore, the histograms for each image are saved in a hash table for quick ref-

52

erence since each image’s RGB features will be repeatedly matched and compared

to other images. Once the match features are extracted, the match is immediately

placed in a thread safe blocking collection for further downstream reduction process-

ing. While the mapping functions shown in Figure 2.16 are executing in a background

thread, parallel reduce functions simultaneously execute processing each completed

match produced to calculate the similarity between all matched images.

/// Asynchronous background process to extract rgb projections (when needed)
/// and calculate similarity between images in parallel.
///

public void calculateDistances(string outputFileLoc)
{

Parallel.ForEach(MatrixMatches.GetConsumingEnumerable(), matrixMatch =>
{

//Calculate similarity between two images and save it to the correct matrix row.
double similarity = RgbProjector

.CalculateSimilarity(matrixMatch.projectionR, matrixMatch.projectionC);
double distance = 1 - similarity;
matrixRows[matrixMatch.rowIndex][matrixMatch.colIndex] = distance;

});
}

Figure 2.17: Classification Metric Function Stage

Figure 2.17 shows the calculateDistances() function which reduces image features

into a single distance measure by comparing each image’s vertical and horizontal lu-

minosity histograms. Once this process has completed, a pairwise distance matrix is

saved to disk which can be used as input into the R program’s Hierarchical Agglomer-

ative Clustering engine [45]. The final distance matrix contains pairwise distances for

all images in the input directory. Figure 2.18 demonstrates that only the minimum

required number of pairwise distances were retained in the final output.

53

Figure 2.18: The Final Image Pairwise Distance Matrix

2.6.4. Hierarchical Agglomerative Clustering using R

While there are multitudes of packages and options for clustering data within R,

the base language provides functions for simple HAC clustering [45]. The purpose

of this section is not explain in too much detail how HAC clustering works. Rather,

a demonstration of how HAC clustering can be used to identify similar images is

provided.

The purpose of clustering is to divide a collection of items into groups based on

their similarity to each other. The HAC clustering of images works by comparing

the pairwise distances of all images and then grouping them into a structure called

a dendrogram. The “dendrogram” is a map of all possible clustering assignments at

various dissimilarity thresholds. The dissimilarity threshold dictates the maximum

amount two images (or two clusters of images) are allowed to be dissimilar and still

end up being merged into the same cluster.

Once the dendrogram has been created, all images can quickly be assigned to

clusters using any dissimilarity threshold value, which is referred to as the “cut height”.

The cut height is typically provided by the user. This process can also occur in

reverse with the user requesting a particular total number of clusters at which point

the algorithm calculates the best cut height to achieve the requested result. While a

54

small cut height will produce smaller clusters with highly similar images, a large cut

height will create larger clusters containing more dissimilar images.

The dendrogram maps out all possible clustering memberships based on each

image’s dissimilarity to the cluster as a group. This can be done using each clus-

ter’s minimum, maximum, average, or centroid distances. Depending on what mea-

sure is chosen, the clustering type is referred to as either single-linkage (minimum),

complete-linkage (maximum), UPGMA (Unweighted Pair Group Method with Arith-

metic Mean) (average), or centroid-based (centroid) clustering. While there are many

types of clustering methods, these seem to be the most common.

The clustering algorithms typically work by starting out with all images in their

own individual cluster of 1, and then successively combining the clusters which are

in closest distance proximity based on the distance metrics described above. The

clusters are combined until no more clusters can be joined without violating the

provided cut height threshold. While this description is a slight over-simplification,

additional research regarding this topic is left up to the reader. Figure 2.19 shows

a dendrogram with all possible clustering combinations for 40 images at various cut

heights which are displayed along the y axis.

Looking at the dendrogram in Figure 2.19, it is easy to see that a cut height

of 0.60 would produce only two clusters containing all 40 images. In this case, the

two clusters are very large and likely contain many dissimilar images since the cut

height threshold allows images with a distance of up to 0.60 to be included within

the same cluster. In the other extreme, a cut height of 0.10 places all but 2 images

into singleton clusters containing only one image each. This is due to the fact that

images must be at least 90% similar to be included within the same cluster. Using

the demo application [50], the cut height can be adjusted to explore the impact on

clustering similar images. Figure 2.20 illustrates how image clusters are changed by

55

Figure 2.19: A Dendrogram for 40 Images

a 10% adjustment in cut height when using screen shots of the replicated criminal

websites discussed in Chapter 6.

56

Figure 2.20: A 10% Decrease in Cut Height Removes the First Image from the Cluster

Figure 2.20 shows a 10% reduction in cut height forcing the third image out of the

cluster. Since two of the images are highly similar, they remain in a cluster of 2 once

the cut height dissimilarity threshold is reduced to 0.25. It is important to understand

that the optimal cut height for image clustering will vary greatly depending on the

types of images you are trying to cluster and the image features used to create the

pairwise image distance matrix. Even within the demonstration project [50] sample

images, strong arguments can made for adjustments in the cut height depending on

57

individual goals. For instance, Figure 2.21 shows 4 images included in a single cluster.

However, some might argue that one of these images is sufficiently different than the

other three to be excluded from the cluster.

Figure 2.21: Should the Third Image be Excluded from the Cluster Since it Contains
Different Graphics?

Conversely, if one were trying to identify websites made from the same template,

all of the images above would be clustered acceptably. In fact, you would even want

these images to be included in the same cluster, if they had different color schemes.

In this instance, a more generous cut height might be applied, and in some cases,

different features might be required for the image matching exercise at hand.

58

Once the distance matrix has been created, it is relatively straightforward to

perform the clustering using R. The R program used to perform Hierarchical Ag-

glomerative Clustering on the image distance matrix can be seen in Figure 2.22. The

cut height dictates how strict the algorithm is on putting images in the same cluster.

If the cut height (measure of dissimilarity) is set to .99 all images would be put in

the same cluster. If the cut height is set to .1 almost all items would be placed in

singleton clusters (clusters of size 1).

#read in the file and convert to a dist matrix, MUST!!! - convert to dist first before doing any subsetting or sorts
distMatrix<-read.csv(inputMatrixPath,sep=",",header=T,row.names=1)
#convert the input to a distance matrix of class "dist"
distMatrix<-as.dist(as.matrix(distMatrix[,1:length(distMatrix)]))

#cluster matrix data and create dendrogram
jclust<-hclust(distMatrix,method="average")

#use dynamic cut package to find the best cutHeight below a certain threshold.
#cuts<-cutreeDynamic(jclust, cutHeight= cutHeight,
minClusterSize = 2, method = "tree", deepSplit = TRUE);

#Set your own cut height.
cuts<-cutree(jclust,h=cutHeight)

#Create the output file.
cutsOut <-data.frame(cbind(WebSite=jclust$labels,Cluster=cuts))

#convert the cluster number to int and sort it
cutsOut$Cluster <- as.integer(cutsOut$Cluster)
cutsOut<-cutsOut[order(cutsOut[,2]),]

Write clustering output to a csv file. Column names are removed since the data is read back into C#
write.table(cutsOut, file =clusteringOutput,row.names=FALSE, col.names=FALSE,sep=",",quote=FALSE)

Figure 2.22: HAC Clustering Using R

Once the image distance matrix is saved to disk using C#, the ImageCluster-

ing.r program reads in the file and converts it to an R distance matrix (dist) object.

Next, the function hclust() creates the dendrogram mapping using the UPGMA (Un-

weighted Pair Group Method with Arithmetic Mean) or “average” distance method.

The cutree() function then cuts the dendrogram to the “cutHeight” which is specified

by the user. It is important to note that this value was actually specified by the user

on the demo application’s [50] form. This value can be passed as an argument from

59

C# to R using the Rscript.exe program which comes with the standard R installa-

tion. Rscript.exe can be started in a seperate process using C# and then passed any

number of command line arguments which can be accessed and used within the R

program.

2.6.5. Conclusion

The C# and R programming languages can be combined to create powerful par-

allel processing pipelines using MapReduce style programming and harnessing the

analytical powers of R as needed. Information produced in both R and C# can also

easily be exchanged and combined across programs when necessary. The demo appli-

cation [50] provided uses the powerful parallel programming libraries in C# to rapidly

extract and compare luminosity histograms from images creating a pairwise distance

matrix for all images contained in a directory folder provided by the user. Next,

C# uses R to perform HAC clustering to combine similar images and then display

the output from R on the demo application’s [50] form. The demo application [50]

gives the user a thumbnail preview of the currently selected image row and also the

next 3 images below the currently selected image. This allows the user to change

the clustering cut height and quickly re-run the R clustering program until they are

satisfied with the image clustering results.

60

Chapter 3

DEVELOPING FEATURES FOR BIOINFORMATICS

3.1. Introduction

Many popular gene sequence analysis tools are based on the idea of pairwise se-

quence alignment [116,138]. Sequence alignment finds the least costly transformation

of one sequence into another using insertions, deletions, and replacements. This

method is related to the well know distance metric called Levenshtein or edit dis-

tance. However, finding the optimal pairwise alignment is computationally expensive

and requires dynamic programming.

Gene sequence words are sub-sequences of a given length. In addition to words

they are often also refered to as k-mers or n-grams, where k and n represent the word

length. Words are extracted from individual gene sequences and used for similarity

estimations between two or more gene sequences [146]. Methods like BLAST [11]

were developed for searching large sequence databases. Such methods search for seed

words first and then expand matches. These so-called alignment-free methods [146]

are based on gene sequence word counts and have become increasingly popular since

the computationally expensive sequence alignment method is avoided. One of the

most successful word-based methods is the RDP classifier [151], a naive Bayesian

classifier widely used for organism classification based on 16S rRNA gene sequence

data.

61

3.2. Sequence Feature Extraction

Numerous methods for the extraction, retention, and matching of word collec-

tions from sequence data have been studied. Some of these methods include: 12-mer

collections with the compression of 4 nucleotides per byte using byte-wise search-

ing [11], sorting of k-mer collections for the optimized processing of shorter matches

within similar sequences [55], modification of the edit distance calculation to include

only removals (maximal matches) in order to perform distance calculations in linear

time [143], and the use of locality sensitive hashing for inexact matching of longer

k-mers [26].

This research combines the following two primary contributions in a novel and

innovative way to achieve the results presented:

1. A form of locality sensitive hashing called minhashing is used to rapidly process

much longer word lengths for enhanced accuracy. Minhashing allows us to

estimate Jaccard similarity without computing and storing information for all

possible words extracted from a gene sequence. Instead, we use the intersection

of the minhash signatures produced during the minhashing process to quickly

calculate an accurate approximation of the Jaccard similarity between sequences

and known taxonomy categories.

2. A MapReduce style parallel pipeline is used to simultaneously identify unique

gene sequence words, minhash each word generating minhash signatures, and

intersect minhash signatures to estimate Jaccard similarity for highly accurate

and efficient identification of gene sequence taxonomies.

Buhler [26] previously used locality sensitive hashing to allow for inexact matches

between longer words of a predefined length. We use locality sensitive hashing in a

very different way as a selection strategy for performing exact word matching when

the number of possible words becomes much too large to store. For example, with an

62

alphabet of 4 symbols, the number of unique words of length 60 is 460 which is already

more than 1036 distinct words. The RDP classifier utilizes a fixed word length of only

8 bases to perform its taxonomy classification processing making the total possible

number of unique words (i.e., features for the classifier) only 48 = 65, 536 words [151].

Strand is able to very rapidly classify sequences while still taking advantage of

the increased accuracy provided by extracting longer words. Using the much larger

possible feature space provided by a longer word length combined with locality sensi-

tive hashing to reduce memory requirements, Strand achieves classification accuracy

similar to RDP in processing times which are magnitudes of order faster. All stages of

Strand processing are highly parallelized, concurrently mapping all identified words

from a gene sequence and reducing mapped words into minhash signatures simul-

taneously. The unique relationship of Jaccard similarity between sets and locality

sensitive hashing [129] allows minhashing to occur during learning, storing only a

predetermined number of minimum hash values in place of all words extracted from

the gene sequences in the learning set. This process reduces the amount of memory

used during learning and classification to a manageable amount.

3.3. Background

This research combines the three concepts of longer length word extraction, min-

hashing, and multicore / multimachine MapReduce style processing in a novel way

that produces superior gene sequence feature extraction and classification results. The

following sections briefly describe the background material relevant to this research.

3.3.1. Word Extraction

The general concept of k-mers or words was originally defined as n-grams during

1948 in an information theoretic context [136] as a subsequence of n consecutive

63

Figure 3.1: Gene Sequence Words of Length 8 Extracted using a Sliding Window

symbols. We will use the terms words or k-mers to refer to n-grams created from

a gene sequence. Over the past twenty years, numerous methods utilizing words

for gene sequence comparison and classification have been presented [146]. These

methods are typically much faster than alignment-based methods and are often called

alignment-free methods. The most common method for word extraction uses a sliding

window of a fixed size. Once the word length k is defined, the sliding window moves

from left to right across the gene sequence data producing each word by capturing k

consecutive bases from the sequence. Figure 3.1 illustrates how gene sequence words

or subsequences of length 8.

In Chapter 4, Strand performs word extraction using lock-free data structures to

identify unique gene sequence words. This method is similar to other highly parallel

word counting tools such as Jellyfish [103]. Traditionally, computationally expensive

lock objects are used in parallel programs to synchronize thread-level access to a

shared resource. Each thread must either acquire the lock object or block until it

becomes available prior to entering critical sections of code. Lock-free data struc-

tures avoid the overhead associated with locking by making use of low-level atomic

read/write transactions and other lock-free programming techniques.

64

3.3.2. Minhashing

In word-based sequence comparison, sequences are often considered to be sets of

words. A form of locality sensitive hashing called minhashing uses a family of random

hash functions to generate a minhash signature for each set. Each hash function used

in the family of n hash functions implement a unique permutation function, imposing

an order on the set to be minhashed. Choosing the element with the minimal hash

value from each of the n hash functions results in a signature of n elements.

Typically the original set is several magnitutes larger than n resulting in a signifi-

cant reduction of the memory required for storage. From these signatures an estimate

of the Jaccard similarity between two sets can be calculated [23, 129]. This means

that when a minhash function is used to randomly select values from a from a set,

the proportion of matching values drawn is an accurate approximation of the Jac-

card similarity between the two sets [93]. This approximation of Jaccard similarity

increases in accuracy as the minhash signature sample size increases [93].

Minhashing has been successfully applied in numerous applications including es-

timating similarity between images [24] and documents [23], document clustering on

the internet [25], image retrieval [32], detecting video copies [29], and relevant news

recommendations [98].

In this research, we apply minhashing to estimate the similarity between sequences

which have been transformed into very large sets of words.

3.3.3. MapReduce Style Processing

MapReduce style programs break algorithms down into map and reduce steps

which represent independent units of work that can be executed using parallel pro-

cessing [31,48]. Initially, input data is split into many pieces and provided to multiple

instances of the mapping functions executing in parallel. The result of mapping is a

65

key-value pair including an aggregation key and its associated value or values. The

key-value pairs are redistributed using the aggregation key and then processed in par-

allel by multiple instances of the reduce function producing an intermediary or final

result.

MapReduce is highly scalable and has been used by large companies such as

Google and Yahoo! to successfully manage rapid growth and extremely massive data

processing tasks [106]. Over the past few years, MapReduce processing has been

proposed for use in many areas including: analyzing gene sequencing data [106],

machine learning on multiple cores [84], and highly fault tolerant data processing

systems [31,40].

In Chapter 4, Strand uses MapReduce style processing to quickly map gene se-

quence data into words while simultaneously reducing the mapped words from mul-

tiple sequences into their appropriate corresponding minhash signatures.

3.4. Extracting Bioinformatics Features for Abundance Estimation

Modern sequencing technologies are continually producing increasing volumes of

sequence data used in the many fields of computational molecular biology. Classifica-

tion of DNA sequences is still challenging due to the growing number of new species

which have been sequenced over the last decade and the sheer volume of sequence

data produced. Metagenomics focuses on the study of sequences extracted directly

from a given sample, and researchers continue to generate and classify sequences from

many diverse environments. In 1991, the Human Genome Project performed DNA

sequencing on 600 randomly selected human brain complementary DNA (cDNA)

clones finding over 337 new genes with strong similarities to 48 genes from other or-

ganisms [8]. During 2007, the Human Microbiome Project acknowledged humans as

“supraorganisms” comprising both human and microbial components and set out to

66

better understand the microbial components which comprise the human genetic and

metabolic landscape [141].

Samples of 16S rRNA have been used to analyze the microbial communities that

exist on the forearm [59], vagina [71], colon [54], stomach [20], and esophagus [124]. It

is becoming increasingly common for research to connect specific afflictions to distinct

microbial compositions within the human body. For example, the identification of

decreased Bacteroidetes microbes within the gut has been linked to obesity [97].

Research [96] has also shown that obesity alters gut microbial ecology. Feces is a

common sampling source for distinguishing differences in the gut microbial diversity

and composition of humans [96]. Shotgun sequencing typically analyzes sequence data

which is representative of multiple species and attempts to describe the abundance

of the various organisms identified within the sample. Sequences from many other

environments outside the human body have been studied including diverse sources

such as bread [22], pigs [154], acidic mine drainage [142], and saltwater [145]. Venter

et. al. studied sequenced saltwater samples from the Sargasso Sea, and shotgun

sequencing revealed that the 1.045 billion base pairs sequenced were estimated to

derive from at least 1800 genomic species [145].

The individual metagenomics reads generated by common sequencing tools are

relatively short in length. Publically available sample data sequenced by the popular

Illumina HiSeq and MiSeq sequencing platforms had a mean length of 92 and 156 base

pairs per read respectively [157]. For a given sample, millions of reads may be pro-

duced. During abundance estimation, the goal is to identify as many microbial species

as possible to determine the sample’s microbial composition. This is accomplished

using reads created from the sample provided for sequencing. While it is possible to

use the sequence alignment tool BLAST [12] for comparing sample sequences to other

sequences from known taxonomies, many newer sequence classification tools claim to

67

be faster and/or more accurate [52, 56,85,121,151,157].

3.4.1. Word Extraction for Abundance Estimation

Words are extracted from individual gene sequences and used for similarity esti-

mations between two or more gene sequences [146]. Methods like BLAST [12] were

developed for searching large sequence databases. Such methods search for seed

words first and then expand matches. These so called alignment-free methods [146]

are based on gene sequence word counts and have become increasingly popular since

the computationally expensive sequence alignment method is avoided. The most

common method for word extraction uses a sliding window of a fixed size. Once

the word length k is defined, the sliding window moves from left to right across the

gene sequence data producing each word by capturing k consecutive bases from the

sequence.

Rapid abundance estimation tools [52, 121, 157], including Strand, derive a large

speed advantage by utilizing an exact-match between the words extracted from se-

quence data to identify the similarity between two sequences. However, this approach

comes at the cost of storing a very large number of sequence words to make accurate

classifications when the value for k results in a very long word. For example, the

extraction of k = 30 base words results in 430 ≈ 1018 unique word possibilities within

the training data feature space when an alphabet of 4 symbols (A,C,G, T) is consid-

ered. Other sequence classifiers avoid storing large volumes of words by reducing the

value for k and the total possible feature space size for the training data structure.

The RDP classier [151] utilizes a fixed word length of only 8 bases to perform its

taxonomy classification processing making the total possible number of unique words

(i.e., features for the classier) only 48 = 65, 536 words. Unfortunately, such a small

feature space makes distinguishing between many sequence classes challenging as the

probability for finding duplicate sequence words greatly increases when compared to

68

the longer 30 base word length. In contrast, Strand avoids these training data feature

space challenges by utilizing a form of lossy compression called Minhashing which is

discussed later in Section 3.4.3. The Minhashing process converts sequence words into

a 64-bit integer making the total Strand training data feature space size 264 possible

unique words.

3.4.2. Creating Words from Sequences that do not Fit into Memory

Working with large amounts of unstructured data (e.g., gene sequences) has be-

come important for many business, engineering, and scientific applications. Locality

sensitive hashing systems drastically reduce the time required to perform a similar-

ity search in high dimensional space (e.g., created by the words in the vector space

model for gene sequences). Locality sensitive hashing also dramatically reduces the

amount of data required for storage and comparison by applying probabilistic dimen-

sionality reduction. We concentrate on the implementation of min-wise independent

permutations (minhashing) which provides an efficient way to determine an accurate

approximation of the Jaccard similarity coefficient between sets (e.g., sets of terms in

documents or sets of words extracted from gene sequences) [63, 76].

While longer gene sequence words produce more accurate exact match Jaccard

coefficient approximations (See Chapter 4 for detailed analysis), these words also

take up more space in memory. For example, a single C# string is estimated to

take approximately 20 bytes of object data overhead and an additional 2 bytes per

character of required memory space [125]. This is approximately 82 bytes or 656 bits

of space required to store a 31 base string in memory. While hashing words into 32 or

64-bit integers can reduce the memory footprint by very large amounts, the selected

word length can also influence collisions, drastically impacting classification accuracy.

Figure 3.2 illustrates how the available unique hash values per unique gene se-

quence word and potential collisions produced are influenced by both word length

69

Figure 3.2: Average Collisions Per Gene Sequence Word using 16 and 32 Base Words
and 32 vs. 64-Bit Hash Codes

and the selection of an appropriate hash code size. For example, over 1 billion po-

tential collisions per word are observed when hashing a 31 base gene sequence word

into only 32-bits while a 64-bit hash provides ample room for each unique 31 base

word value. Finally, the remaining sections of Figure 3.2 show that a 32-bit hashing

function provides enough unique values to map words up to 16 bases in length, while

a 64-bit hashing function supports unique values for words up to 32 bases in length.

Collisions may still occur when storing a 31 base word as a 64-bit hash. However,

they are drastically reduced when compared to storing a 31 base word as a 32-bit

hash.

3.4.3. Creating Minhash Signatures from Sequences that do not Fit into Memory

The concept of locality sensitive hashing is well established with publications

dating back as far as 1998 [74] and 1999 [63] exploring its use for breaking the curse of

70

dimensionality in nearest neighbor query problems. Prior to locality sensitive hashing,

the data structures used for similarity searches scaled very poorly. Without using a

method for approximation such as locality sensitive hashing, searches exceeding 10 to

20 dimensions, required inspection of most records in the database similar to a brute

force linear search.

In word-based sequence comparison, sequences are often considered to be sets of

words. A form of locality sensitive hashing called minhashing uses one or more ran-

dom hash functions to generate a minhash signature for each set. Each hash function

used implements a unique permutation function, imposing an order on the set to be

minhashed. Choosing one or more elements with the minimal hash value from each of

the n permutations of the set results in a signature of n elements. Typically the orig-

inal set is several magnitutes larger than n resulting in a significant reduction of the

memory required for storage. From these signatures an estimate of the Jaccard simi-

larity between two sets can be calculated [23, 93]. Minhashing has been successfully

applied in numerous applications including estimating similarity between images [24]

and documents [23], document clustering on the internet [25], image retrieval [32],

detecting video copies [29], and relevant news recommendations [98].

When using only a single hashing function, hash values are sorted, and the smallest

n values are selected to form the minhash signature. This approach is advantageous

when very large volumes of sequence data must be processed. Using a single hashing

function avoids the overhead required for each word to be hashed by multiple hashing

functions. This approach is shown in Chapter 4 to have advantages over merely

taking random samples when comparing sequence data. Since the hashing function

imposes a random permutation on the gene sequence words, selecting the n smallest

words from any number of hashing functions into a minhash signature ensures that

matching words are efficiently extracted from both sequences when they exist.

71

Some sequenced data contains millions of bases which may not fit into memory

during word extraction. In these instances, it may not be possible to generate the

minhash hash signature for a particular sequence or human genome all at one time.

A process called “chunking” can be applied to break sequences in to smaller pieces

for creating the minhash signature in multiple stages. Chunking has two primary

advantages.

1. Sequences can be “chunked” to select minimum hash values from portions of

the sequence in stages. This allows only portions very large sequences to be

“buffered” into memory in stages.

2. Chunking may also be deployed to enforce and guarantee the selection of min-

hash values evenly across the entire sequence. Using this strategy, a much

smaller number of minhash values are selected from each chunk of a given se-

quence and the user is ensured that an even number of minhash values are

generated from each selected section or chunk.

In a typical chunking process, overlapping chunks of text are selected from the

target sequence. The chunk overlap ensures that no words within the entire gene

sequence are broken by the chunking process. When producing 31 base words with a

chunk size of 100 words for example, bases 1 - 130 are selected for chunk 1 and bases

101 - 230 selected for chunk 2. This ensures that exactly 100 words of 31 bases in

length are produced from both chunk 1 and chunk 2 with no loss of gene sequence

words between the two chunks. In this case, a chunk 1 and 2 overlap of 30 words

occurs between positions 101 - 130 to ensure that the 100th word in chunk one is

exactly 31 bases in length and that the 1 word in chunk 2 starts exactly 1 base after

the last word in chunk 1.

72

3.5. Conclusion

Each of the feature extraction methods for gene sequences introduced in this

Chapter support various aspects of the rapid and accurate sequence classification

techniques demonstrated by the Strand application in Chapter 4. In the next Chapter,

the Strand application is utilized on various sequence datasets and compared to other

state of the art gene sequence classification tools demonstrating how the previously

described sequence feature extraction techniques may be used to produce superior

gene sequence classification and abundance estimation results.

73

Chapter 4

S.T.R.A.N.D.

The Super Threaded Reference-Free Alignment-Free N-sequence Decoder (Strand)

is a highly parallel technique for the learning and classification of gene sequence

data into any number of associated categories or gene sequence taxonomies. Current

methods, including the state-of-the-art sequence classification method RDP, balance

performance by using a shorter word length. Strand in contrast uses a much longer

word length, and does so efficiently by implementing a Divide and Conquer algorithm

leveraging MapReduce style processing and locality sensitive hashing. Strand is able

to learn gene sequence taxonomies and classify new sequences approximately 20 times

faster than the RDP classifier while still achieving comparable accuracy results. This

paper compares the accuracy and performance characteristics of Strand against RDP

using 16S rRNA sequence data from the RDP training dataset and the Greengenes

sequence repository.

This research combines the following two primary contributions in a novel and

innovative way to achieve the results presented:

1. A form of locality sensitive hashing called minhashing is used to rapidly process

much longer word lengths for enhanced accuracy. Minhashing allows us to

estimate Jaccard similarity without computing and storing information for all

possible words extracted from a gene sequence. Instead, we use the intersection

of the minhash signatures produced during the minhashing process to quickly

calculate an accurate approximation of the Jaccard similarity between sequences

and known taxonomy categories.

74

Figure 4.1: High-level Diagram of the Strand MapReduce Style Pipeline.

2. A MapReduce style parallel pipeline is used to simultaneously identify unique

gene sequence words, minhash each word generating minhash signatures, and

intersect minhash signatures to estimate Jaccard similarity for highly accurate

and efficient identification of gene sequence taxonomies.

4.1. Learning Category Signatures

Figure 4.1 illustrates a high-level process of the Strand MapReduce pipeline in-

cluding both the mapping of gene sequence data into words, the reduction of words

into minimum hash values, and finally, the last reduce step which organizes the min-

hash signatures by category. In the following we will describe each stage in detail.

75

4.1.1. Mapping Sequences into Words

The input data are sequences with associated categories.

Definition 4.1 [Sequence] Let S be a single input sequence, a sequence of |S| sym-

bols from alphabet Σ = {A,C,G, T}.

Definition 4.2 [Category] Let C be the set of all L known taxonomic categories and

cl ∈ C be a single category where l = {1, 2, . . . , L}. Each sequence S is assigned a

unique true category cl ∈ C.

The goal of mapping sequences into words is to create for each sequence a word

profile.

Definition 4.3 [Sequence Word Profile] Let S denote the word profile of sequence

S, i.e., the set of all words sj ∈ S, j = {1, 2, . . . , |S|}, with length k extracted from

sequence S.

4.1.2. Creating Sequence Minhash Signatures

As words are produced, minhashing operations are also performed simultaneously

in parallel to create minhash signatures.

Definition 4.4 [Sequence Minhash Signature] Minhashing (min-wise locality sensi-

tive hashing) applies a family of random hashing functions h1, h2, h3...hk to the input

sequence word profile S to produce k independent random permutations and then

chooses the element with the minimal hash value for each. We define the minhash

function:

minhash: S → Zk
+

which maps a sequence word profile S to a set of k minhash valuesM = {m1,m2, . . . ,mk},

called the minhash signature.

76

Min-wise locality sensitive hashing operations are performed in parallel and con-

tinually consume all randomly selected word hashes for each processed sequence. The

minhash signature’s length is predetermined by the number of random hashing func-

tions used during minhash processing, and the minhash signature length impacts

processing time and overall classification accuracy. Processes using more hashing

functions (i.e., longer minhash signatures) have been proven to produce more ac-

curate Jaccard estimations [129]. However, careful consideration must be given to

the trade-off between the minhash signature’s impact on performance and Jaccard

estimation accuracy.

A thread-safe minhash signature collection contains one minhash signature for

each unique input sequence. During minhash processing, all hash values produced

for each sequence’s unique set of word hashes are compared to the sequence’s current

minhash signature values. The minimum hash values across all unique words for each

sequence and each unique hashing function are then retained within each sequence’s

final minhash signature. In applications where the similarity calculation incorporates

word length or the frequency of each minimum hash value, the length and frequency

for any word resulting in a particular minimum hash value can also be contained

as additional properties within each minhash signature’s values. However, lengths

are not retained within the Strand data structure during training since they can

quickly be determined during any subsequent classification’s minhashing process. In

some cases, the total number of hashing functions and overall minhashing operations

can be reduced by saving the n smallest hash values generated from each individual

hashing function. For instance, the number of hashing operations can be cut in half

by retaining the 2 smallest values produced from each unique hashing function.

77

4.1.3. Reducing Sequence Minhash Signatures into Category Signatures

Next we discuss how to represent an entire category as a signature built from the

minhash signatures of all sequences in the category.

Definition 4.5 [Category Minhash Signature] We define the category minhash sig-

nature of category cl ∈ C as the union of the sequence minhash signatures of all

sequences assigned to category cl:

Cl =
⋃
S∈cl

minhash(S),

where the union is calculated for each minhash hashing function separately.

The Strand data structure actually represents an array containing one data struc-

ture for each unique hashing function used (see Figure 4.1). Since this structure is

keyed using minhash values, hash function partitions must exist to separate the min-

hash values produced by each unique hashing function. Within each individual hash

function partition, a collection of key-value pairs (kvp) exists which contains the min-

hash value as a key and then a second nested collection of categorical key-value pairs

for each value. The nested collection of kvp-values contains all category numbers and

associated frequencies (when required) that have been encountered for a particular

minhash value. In practice however, minhash values seldom appear to be associated

with more than one taxonomy category which drastically reduces the opportunity

for imbalance between categories, especially when minhash value frequencies are not

used within the classification similarity function.

During learning, minimum hash values for each unique hashing function are re-

tained within the array of nested categorical key-value pair collections and partitioned

by each unique hashing function. Each hash function’s collection contains all unique

minimum hash values, their associated taxonomies, and optional frequencies. Us-

78

ing the Strand data structure, minhash signatures for each input data sequence can

quickly be compared to all minimum hash values associated with each known taxon-

omy including the taxonomy frequency (when utilized) during classification. During

training, each value in the input data sequence’s minhash signature is reduced into the

Strand data structure by either creating a new entry or adding additional taxonomy

categories to an existing entry’s nested categorical key-value pair collection.

All results presented in this research were achieved using only a binary classifi-

cation similarity function. This approach produced optimal performance while still

achieving comparable accuracy results when benchmarked against the current top

performer in this domain.

4.2. Classification Process

The MapReduce style architecture used for learning and classification are very

similar. While the process of mapping words into minhash signatures is identical,

the reduce function now instead of creating category signatures creates classification

scores.

The word profiles of sequences are the set of words contained within the sequences.

A common way to calculate the similarity between sets is the Jaccard index. The

Jaccard index between two sequence word profiles S1 and S2 is defined as:

Jaccard(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

However, after minhashing we only have the sequence minhash signatures

M1 = minhash(S1) andM2 = minhash(S2)

representing the two sequences. Fortunately, minhashing [129] allows us to effi-

ciently estimate the Jaccard index using only the minhash signatures:

79

Jaccard(S1,S2) ≈
|minhash(S1) ∩minhash(S2)|

k
,

where the intersection is taken hash-wise, i.e., how many minhash values agree

between the two signatures.

Next, we discuss scoring the similarity between a sequence minhash signature and

the category minhash signatures used for classification. Category signatures are not

restricted to k values since they are created using the unique minhash values of all

sequence minhash signatures belonging to the category. This is why we do not directly

estimate the Jaccard index, but define a similarity measure based on the number of

collisions between the minhash values in the sequence signature and the category

signature.

Definition 4.6 [Minhash Category Collision] We define the Minhash Category Col-

lision between a sequence S represented by the minhash signatureM and a category

signature C as:

MCC(M, C) = |M ∩ C|,

where the intersection is calculated for each minhash hashing function separately.

We calculate MCC for each category and classify the sequence to the category

resulting in the largest category collision count.

Many other more sophisticated approaches to score sequences are possible. These

are left for future research.

80

4.3. Results

In this section we report on a set of initial experiments. First, we compare dif-

ferent word sizes and numbers of sequence signature lengths (i.e., the number of

hashing functions used for minhashing). Then we compare Strand with RDP using

two different data sets.

The data sets we use are all 16S rRNA data sets. The RDP classifier raw training

set was obtained from the RDP download page1. It contains 9,217 sequences. The

second data set we use is extracted from the Greengenes database2. We randomly

selected 150,000 unaligned sequences with complete taxonomic information for our

experiments. We used for all experiments 10-fold cross-validation. During 10-fold

cross-validation, the entire training file is randomly shuffled and then divided into

ten equally sized folds or segments. While nine folds are learned, one fold is held out

for classification testing. This process is repeated until all ten folds have been held

out and classified against.

The experiments were performed on a Windows 8 (64-bit) machine with a 2.7 Ghz

Intel i7-4800MQ quad core CPU and 28 GB of main memory installed. For the RDP

classifier we used version 2.5, and we implemented Strand in C#.

4.3.1. Choosing Word Size and Signature Length

Both, the used word size and the length of the signature need to be specified for

Strand. We expect both parameters to have an impact on classification accuracy,

space, and run time. While it is clear that with increasing signature lengths also the

time needed to compute sequence signatures and the space needed to store signatures

increases, the impact of word size is not so clear. In the following we will empirically

find good values for both parameters. To look at the impact of the word length,
1http://sourceforge.net/projects/rdp-classifier/
2http://greengenes.lbl.gov

81

http://sourceforge.net/projects/rdp-classifier/
http://greengenes.lbl.gov

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 50 100 150 200 250

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Word Length at Signature Size = 300

Genus

Overall

Figure 4.2: Strand word size accuracy on RDP 16S rRNA.

we set the signature size (i.e., number of hash functions used for minhashing) to

300. This was empirically found to be a reasonable value. Next we perform 10-fold

cross-validation on the RDP training data for different word lengths ranging from 8

bases to 200 bases. The average accuracy of Genus prediction and overall prediction

(average accuracy over all phylogenetic ranks) depending on the word length is shown

in Figure 4.2. We see that accuracy increases with word length till the word length

reaches 60 bases and then starts to fall quickly at lengths larger than 100 bases. This

shows that the optimal word length for the used 16S rRNA is around 60 bases.

Next, we look at the impact of sequence signature length. We use a fixed word

82

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

0 100 200 300 400 500 600

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Signature Size at Word Length = 60

Genus

Overall

Figure 4.3: Strand signature length accuracy on RDP 16S rRNA.

size of 60 and perform again 10-fold cross-validation on the RDP training data set

using signature lengths from 50 to 500. Figure 4.3 shows the impact of signature

length. Accuracy initially increases with signature length, but flattens at about 300.

Since an increased signature length directly increases run time (more hashes need to

be calculated) and storage, we conclude that 300 is the optimal size for the used 16S

rRNA data, but signature lengths of 200 or even 100 also provide good accuracy at

lower computational cost.

While Strand allows users to specify word and signature sizes, empirically finding

good values for both parameters need not be performed with each use of the applica-

83

tion. We believe the results presented show that using the Strand default word size

of 60 bases and a signature size of 300 will produce optimal results on 16S rRNA

sequence data.

4.3.2. Comparison of Strand and RDP on the RDP Training Data

In this section we compare Strand and RDP in terms of run time and accuracy. For

the comparison we use again 10-fold cross-validation on the RDP training data set.

Table 4.1 shows the run time for learning and classification using Strand and RDP.

While the learning times for Strand are approximately 30% faster, Strand classifies

sequences almost 20 times faster than RDP. Strand trained with 8,296 sequences

averaging around 23 seconds per fold while RDP averaged around 33 seconds on the

same 8,296 training sequences. During 10-fold cross-validation, Strand was able to

classify 921 sequences averaging 3 seconds per fold while RDP’s average classification

time was 59 seconds per fold. This is substantial since classification occurs much

more frequently than training in a typical application. Since Strand uses longer

words during training and classification, no bootstrap sampling or consensus is used

to determine taxonomy assignments. Strand greatly increases classification speeds

when compared to RDP by combining this factor with a highly parallel MapReduce

style processing pipeline.

An accuracy comparison between Strand and RDP is shown in Table 4.2. In

cross-validation it is possible that we have a sequence with a Genus in the test set

for which we have no sequence in the learning set. We exclude such sequences from

the results since we cannot predict a Genus which we have not encountered during

learning. Strand achieves similar overall accuracy to RDP, however, as we saw above

in a fraction of the time.

84

Fold Learning Sequences Classification Sequences
Time Learned Time Classified

Strand Performance Results
1 0:19 8,296 0:03 921
2 0:22 8,296 0:03 921
3 0:22 8,296 0:03 921
4 0:23 8,296 0:03 921
5 0:24 8,296 0:03 921
6 0:25 8,296 0:03 921
7 0:24 8,296 0:04 921
8 0:25 8,296 0:03 921
9 0:24 8,296 0:03 921
10 0:23 8,296 0:03 921

Avg. 0:23 0:03
RDP Performance Results

1 0:33 8,296 0:58 921
2 0:33 8,296 0:58 921
3 0:33 8,296 0:59 921
4 0:33 8,296 0:59 921
5 0:34 8,296 1:00 921
6 0:34 8,296 0:59 921
7 0:33 8,296 0:59 921
8 0:33 8,296 0:58 921
9 0:32 8,296 0:57 921
10 0:33 8,296 0:58 921

Avg. 0:33 0:59

Table 4.1: 10-fold cross-validation performance comparison between Strand and RDP.

85

Fold Kingdom Phylum Class Order Family Genus Overall
Strand Accuracy Results

1 100% 100% 99.9% 99.5% 99.0% 94.5% 98.8%
2 100% 100% 100% 100% 99.4% 95.2% 99.1%
3 100% 100% 99.8% 99.4% 98.3% 93.7% 98.5%
4 100% 100% 99.6% 99.3% 97.9% 93.1% 98.3%
5 99.9% 99.9% 99.9% 99.8% 99.4% 94.4% 98.9%
6 100% 100% 99.8% 99.5% 98.5% 93.7% 98.6%
7 100% 100% 100% 99.6% 99.2% 93.7% 98.8%
8 100% 100% 100% 99.9% 98.2% 92.5% 98.5%
9 100% 100% 100% 100% 99.4% 93.1% 98.8%
10 100% 100% 99.9% 99.8% 98.8% 93.3% 98.7%

Avg. 100% 100% 99.9% 99.7% 98.8% 93.7% 98.7%
RDP Accuracy Results

1 100% 100% 100% 99.5% 98.6% 95.1% 98.9%
2 100% 100% 100% 99.8% 98.8% 94.0% 98.8%
3 100% 99.9% 99.8% 98.9% 97.6% 93.3% 98.3%
4 100% 100% 99.8% 99.5% 99.1% 93.2% 98.6%
5 100% 100% 100% 99.9% 99.5% 94.4% 99.0%
6 100% 100% 99.9% 99.5% 98.2% 92.3% 98.3%
7 100% 100% 100% 99.5% 99.2% 93.9% 98.8%
8 100% 100% 100% 99.5% 98.2% 91.5% 98.2%
9 100% 99.6% 99.6% 99.6% 99.0% 93.9% 98.6%
10 100% 100% 99.8% 99.5% 98.6% 92.3% 98.4%

Avg. 100% 100% 99.9% 99.5% 98.7% 93.4% 98.6%

Table 4.2: 10-fold cross-validation accuracy comparison between Strand and RDP.

4.3.3. Comparison of Strand and RDP on the Greengenes Data

Here we compare Strand and RDP on a sample of 150,000 sequences from the

Greengenes project. While the RDP training set is relatively small and well curated

to create a good classifier, these sequences will contain more variation. To analyze

the impact of data set size, we hold 25,000 sequences back for testing and then use

incrementally increased training set sizes from 25,000 to 125,000 in increments of

25,000 sequences. For Strand we use a word size of 60 and a sequence signature

length of 100.

86

97.20%

97.40%

97.60%

97.80%

98.00%

98.20%

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

25,000 50,000 75,000 100,000 125,000

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

Sequences Learned

RDP Strand

Figure 4.4: Strand and RDP accuracy on Greengenes data.

87

0

200

400

600

800

1,000

1,200

25,000 50,000 75,000 100,000 125,000

Tr
ai

n
in

g
Ti

m
e

 in
 S

ec
o

n
d

s

Sequences Learned

RDP Strand

Figure 4.5: Strand and RDP running time on Greengenes data.

Figure 4.4 shows the classification accuracy of Strand and RDP using an increas-

ingly larger training set. Strand has slightly higher accuracy. Accuracy increases for

both classifiers with training set size. However, it is interesting that after 100,000

sequences, the accuracy starts to drop with a significantly steeper drop for RDP.

Figure 4.5 compares the time needed to train the classifiers with increasing training

set size. During training, Strand execution times consistently outperform RDP with

training time deltas further widening as input training volumes increase. In Figure 4.5

RDP training times increase rapidly as the training set size increases. Strand training

times increase at a rate closer to linear. When training against 125,000 Greengenes

88

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

25,000 50,000 75,000 100,000 125,000

M
in

h
as

h
 P

ro
d

u
ce

d
 a

s
a

%
 o

f
W

o
rd

s
P

ro
ce

ss
ed

Sequences Learned

631K

31.8M
M

58.0M

907K

1.1M

88.3M
118.4M

1.4M

Words Processed

Minhashes Stored

1.7M

149.7M

Figure 4.6: Percentage of retained entries in the Strand data structure.

sequences, Strand completes training in 5:39 (mm:ss) while RDP takes 16:50 (mm:ss).

The classification time does not vary much with the training set size. Strand’s average

classification time for the 25,000 sequences is 1:41 (mm:ss) while the average time for

RDP is 20:15 (mm:ss).

Finally, we look at memory requirements for Strand. Since we use a word size of

60 bases, there exist 460 ≈ 1036 unique words. For RDP’s word size of 8 there are

only 48 = 65536 unique words. Strand deals with the huge amount of possible words

using minhashing and adding only a small signature for each sequence to the class

signature. This means that the Strand data structure will continue to grow as the

89

volume of training data increases.

The overall space consumption characteristics of Strand are directly related to

the selected word size, the minhash signature length, and the amount of sequences

learned. Figure 4.6 shows the percentage of unique signature entries (minhash values)

stored relative to the number of words processed. With increasing training set size

the fraction of retained entries falls from 2% at 25,000 sequences to just above 1% at

125,000 sequences. This characteristic is attributed to the fact that many sequences

share words. In total, Strand stores for 125,000 sequences 1.7 million entries which

is more than the 65,536 entries stored by RDP, but easily fits in less than 1 GB of

main memory which is typically in most modern smart phones.

4.3.4. Conclusion

In this research we have introduced a novel word-based sequence classification

scheme that utilizes large word sizes. A highly parallel MapReduce style pipeline is

used to simultaneously map gene sequence input data into words, map words into

word hashes, reduce all word hashes within a single sequence into a minimum hash

signature, and then populates a data structure with category minhash signatures

which can be used for rapid classification. Experiments using RDP and Greengenes

data show that for 16S rRNA a word size of 60 bases and a sequence minhash signature

length of 300 produce the best classification accuracy. Compared to RDP, Strand

provides comparable accuracy while performing classification 20 times as fast.

4.4. Using Strand for Abundance Estimation

This work extends our prior presentation of Strand [52], demonstrating its useful-

ness for performing abundance estimation. We also show how the application achieves

comparable accuracy to other abundance estimation programs [121,157] demonstrat-

90

ing a more scalable, multi-threaded implementation. This is accomplished using a

form of Locality Sensitive Hashing called minhashing. We show the Strand applica-

tion’s ability to scale by replicating classification and training worker processes any

number of times across commodity hardware machines. Finally, Strand is bench-

marked against the Kraken [157] and CLARK [121] classifiers using the HiSeq and

MiSeq training files [157].

4.4.1. Map Reduction Aggregation

For abundance estimation, Strand uses the map reduction aggregation process

shown in Figure 4.7 to rapidly prepare and process input data in parallel during

training or classification. Map reduction aggregation executes using shared memory

during all stages within each Strand worker process. When multiple worker processes

are used in a cluster, a single master process combines the outputs from each of the

self-contained workers as they complete.

During stage 1 of map reduction aggregation, multiple threads extract words and

associated classes from the gene sequence data in parallel. Simultaneously, a stage 2

combiner process minhashes each extracted word eventually creating a minhash sig-

nature for each input sequence provided. Finally, the unique minash keys within

each minhash signature are summarized by class during the reduce stage. During

training, the reduce step adds minhash values into the training data structure, and

during classification, minhash values are looked up within the training data structure

and minhash intersections for each class are tabulated to determine one or more class

similarity estimates.

Strand uses the map reduction aggregation process shown in Figure 4.7 to rapidly

prepare and process input data in parallel during training or classification. Map

reduction aggregation executes using shared memory during all stages within each

Strand worker process. When multiple worker processes are used in a cluster, a single

91

Figure 4.7: Strand Map Reduction Aggregation Processing for a Single Training or
Classification Worker Process.

master process combines the outputs from each of the self-contained workers as they

complete.

4.4.1.1. Minhashing during Map Reduction Aggregation

Minhashing is utilized within Strand to drastically reduce the amount of stor-

age required for high capacity map reduction aggregation and classification function

operations. Map reduction aggregation requires multiple pipeline stages when lossy

compression via minhashing is deployed.

In Figure 4.7, Strand uses a map reduction aggregation pipeline including an

additional combiner step to facilitate minhashing. This process also represents a

more accurate method for Jaccard approximation than mere random selection of

words. Minhashing is a form of lossy data compression used to remove a majority

of the gene sequence words produced during stage one mapping by compressing all

words into a much smaller minhash signature.

During stage one of the map reduction aggregation method shown in Figure 4.7,

transitional sequence word outputs are placed into centralized, thread-safe storage

92

areas accessible to minhash operation workers. In stage 2, a pre-determined number

of distinct hashing functions are then used to hash each unique key produced during

the stage one map operation one time each. As the transitional keys are repeatedly

hashed, only one minimum hash value for each of the distinct hash functions are

retained across all keys. When the process is completed only one minimum hash

value for each of the distinct hash functions remains in a collection of minhash values

which represent the unique characteristics of the learning or classification input data

within a minhash signature.

To further enhance minhashing performance, only a single hash function can be

used to generate a minhash signature. In this scenario, all words are hashed by a

single hashing function and n minimum hash values are selected to make up the

minhash signature. This eliminates the overhead of hashing words multiple times

to support the family of multiple hashing functions traditionally used to create a

minhash signature. Reducing the number of hashing functions however, can come at

the expense of additional minhash value collisions and reduced accuracy in certain

instances. As discussed in Section 3.4.2 and illustrated in Figure 3.2, this depends

on both the number of unique values supported by the hashing function used and

the total number of unique gene sequence words contained within the training data

corpus and eventually the Strand training data structure. Collisions and reduced

accuracy occur when the unique values supported by the hashing function used are

not large enough to represent the number of unique words hashed and stored within

the training data structure.

93

Figure 4.8: The Strand Partitioned Training Data Structure.

The minhash signature is further reduced by storing each minhash value in a par-

titioned collection of nested categorical key-value pairs. The training data structure

illustrated in Figure 4.8 is designed in this manner. The training data structure’s

nested key value pairs are partitioned or sharded by each distinct hash function used.

For example, when the minhashing process uses 100 distinct hash functions to create

minhash signatures, the training data structure is divided into 100 partitions. All

unique minhash keys created by hash function 0 are stored within partition 0 of the

training data structure. Likewise, all unique minhash keys created by hash function

99 are stored in partition 99. However, when only a single hash function is used, no

partitions are required.

The partitioned training data structure shown in Figure 4.8 includes minimum

hash values which act as the key in the nested categorical key-value pair collection.

Each minhash key contains as it value a collection of the classes which are associated

with that key in the system. This collection of classes represents the nested categorical

key-value pairs collection. Each nested categorical key-value pair contains a known

class as its key and an optional frequency, weight, or any other numerical value

which represents the importance of the association between a particular class and the

94

minhash value key. As discussed further in Section 4.4.3, many binary classification

strategies do not require frequencies or other numerical values to be associated with

each class. In these instances, only class values may be associated with each minimum

hash value key.

4.4.2. Training Data Compression

The keys within the Strand training data structure are compressed by splitting the

bits within each numeric key in half dividing them into left and right bit components.

When using a 64-bit key for example, this compression splits each 64-bit key into its

respective left and right 32-bit components. Compression occurs by grouping together

all 64-bit keys with matching left 32-bits and only storing the left 32-bits for all keys

with matching values one time.

4.4.2.1. Merge Sort Processing and Training Worker Deduplication

Compression of the Strand training data structure begins using a sort processing

step at the end of each training process. Merge sort processing also occurs for each

training worker’s individual output when multiple worker processes are used in a

training cluster. Each nested categorical key value pair collection in the training data

structure is sorted by the minhash key. The output from this process can remain

in memory or be written out to disk. When multiple training workers are deployed,

the merge sort process combines all individual training worker outputs, eliminating

duplicate keys and concatenating delimited category values within each record of the

merged file.

At this point during processing, category values within the final merge sorted

output data may contain duplicates. However, when the training data is loaded into

memory for classification, all duplicated category values are removed in a single dedu-

plication step. This single step processing saves substantial overhead when compared

95

to loading multiple duplicate keys and associated categories into a single training data

structure in memory where any number of duplicated key’s category collections must

be repeatedly merged with a pre-existing collection of unique categories to create a

new category set. The cost of concatenating the duplicated key’s category collections

as a string during merge sort processing turns out to be dramatically faster.

4.4.2.2. 64-Bit Minhash Value Compression

When 64-bit minhash keys are used during training, the Strand training data

structure is compressed by storing the left and right 32-bits of each 64-bit key in

separate locations. This compression strategy uses the left 32-bits of each 64-bit

minhash as the key in the Strand training data structure. The remaining right 32-

bits are stored within key’s value. Each key’s value now contains an array of structs

which are made up of all the unique right 32-bits and their respective categories which

all share the same left 32-bit key. This technique saves 32-bits of in memory storage

each time two 64-bit minhash values share the same left 32-bit key.

Since each of the 64-bit keys and associated categories come from a merge sorted

input file, we know that each resulting array of structs containing the right 32-bit keys

and associated categories are in right 32-bit key sorted order. During classification,

64-bit keys are split into the left and right 32-bit values. Any time the left 32-bit

value contains a value array with length greater than 1, a binary search is executed

to determine if the remaining right 32-bits can be located within the array.

Empirical test results on the National Center for Biotechnology Information’s

(NCBI) RefSeq database [128] show that, on average, this compression technique

allows the in memory storage of almost twice as many 64-bit minhash values generated

from 31 base gene sequence words.

96

4.4.2.3. Classification Training Database Optimization

It is important to note that while map reduction aggregation processing for both

training and classification should be identical, the training data structures required

for learning and classification processing can be different. For example, the parallel

processing pipeline used during training requires some form of atomic, thread safe op-

erations for adding and updating minhash keys and associated category values within

the training database. During classification however, such thread safety adds unnec-

essary space in memory and extra processing overhead since only read operations are

required.

While 64-bit key compression could be used during training, it is typically not

since multiple training workers are deployed. In this scenario, key compression is

eliminated in favor of decreased processing time. Memory consumption is still easily

managed by simply using a specified number of workers which write all unique 64-bit

keys and associated categories to disk when processing is complete. Training memory

consumption is managed by using a specified number of training worker processes and

input file splits. For example, to decrease the memory required for 5 training workers

processing 5 input file splits, a Strand user can simply specify to use 5 workers and

10 input file splits. This effectively cuts the maximum memory required for training

in half. The 5 training workers would begin processing input file splits 1-5 having

only half of the required input data in memory at any given time. As each worker

completes processing, a new training worker is spawned and begins processing the

next input file split. Using this configuration, any amount of sequence data can be

processed using one or more worker processes on one or more computing devices.

The merge sort process combines each of the intermediary training worker output

files into a single file with unique 64-bit keys and associated categories. Loading this

entire file into memory is critical for optimal classification processing. The optimized

97

classification training data structure splits each 64-bit key into left and right 32-bit

components compressing all 64-bit keys which share matching left 32-bit components

as previously described in Section 4.4.2.2. In instances where all of the classification

training data will not fit into memory on a single machine, training data can be

partitioned by class or key ranges making a single classification for each partition and

then combining results for the final classification.

4.4.3. Classification Function Processing

Using a single training data structure, multiple classification scores are supported.

Jaccard Similarity is calculated using the intersection divided by the union between

the two sets. No frequency values are required for this similarity measure. For

example, the Jaccard similarity between two sets S1 and S2 is defined as SJ(S1,S2),

where:

SJ(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

Weighted Jaccard Similarity is also supported when the class frequency for unique

minhash values are retained in the nested categorical key-value pair collection and

taken into consideration [76]. The Weighted Jaccard similarity between two sets S1

and S2 is defined as SWJ(S1,S2), where:

SWJ(S1,S2) =

∑
i min(S1i ,S2i)∑
i max(S1i ,S2i)

In Strand, Jaccard similarity is approximated by intersecting two sets of minhash

signatures where longer signatures provide more accurate Jaccard similarity or dis-

tance approximations [129]. Class frequencies may be used to produce other Jaccard

Index variations such as the Weighted Jaccard Similarity [76] shown above. How-

ever, large performance gains are achieved in Strand by using binary classification

98

techniques where no nested categorical frequency values or log based calculations are

required during classification function operations. In the binary minhash classifica-

tion approach, minhash signature keys are simply intersected with the minhash keys

of known classes to calculate the similarity between a query sequence and a known

class.

After minhashing gene sequence words, we only have the sequence minhash sig-

naturesM1 = minhash(S1) andM2 = minhash(S2) representing the two sequences.

Fortunately, minhashing [129] allows us to efficiently estimate the Jaccard index using

only the minhash signatures:

SJ(S1,S2) ≈
|minhash(S1) ∩minhash(S2)|

k
,

where the intersection is taken hash-wise, i.e., how many minhash values agree

between the two signatures.

Next, we discuss scoring the similarity between a sequence minhash signature and

the category minhash signatures used for classification. Category signatures are not

restricted to k values since they are created using the unique minhash values of all

sequence minhash signatures belonging to the category. This is why we do not directly

estimate the Jaccard index, but define a similarity measure based on the number of

collisions between the minhash values in the sequence signature and the category

signature.

Definition 1 (Minhash Category Collision) We define the Minhash Category Col-

lision between a sequence S represented by the minhash signature M and a category

signature C as:

99

MCC(M, C) = |M ∩ C|,

where the intersection is calculated for each minhash hashing function separately.

We calculate MCC for each category and classify the sequence to the category

resulting in the largest category collision count.

Many other more sophisticated approaches to score sequences are possible. These

are left for future research.

4.4.4. Applying Strand to Machine Learning Tasks

Figure 4.9 shows the self-contained training and classification worker processes in

combination with a single training data structure. During training, map reduction

aggregation output of known classes are consolidated or further reduced by storing

all outputs using the same map reduction aggregation method in a single training

data structure. The nested collection of categorical key-value pairs for each key in

the training data structure provides a numerical description of that key across any

number of categorical keys (i.e. known classes). The training data structure may also

be partitioned to support more complex map reduction aggregation outputs or to

enhance parallelism during machine learning. A partitioned training data structure

was also presented in Figure 4.8 for the purpose of supporting lossy compression using

minhashing. The training data structure is updated during training worker processing

and read during classification worker processing to apply the specified classification

function operations and calculate similarity between a query sequence and one or

more known classes within the system.

Unique sequence words are summarized during map reduction aggregation and

may optionally calculate the frequency of each unique sequence word identified. The

taxonomies associated with each word are made available to the reduce step and act

as the associated classes during training. In the naive approach, the training data

100

Figure 4.9: Strand Training and Classification Workers using the Collaborative Ana-
lytics Framework. This is a copy of Figure 2.13 for reading convenience.

101

structure contains a single partition where each unique sequence word contains a

nested collection of taxonomic classes and the associated frequency for a particular

word within each taxonomic class as the nested categorical key-value pair collection.

However, since minhashing is used, an additional combiner step is added to hash each

word one time retaining the minimum hash value or multiple minimum hash values

for each unique hashing function used. These values make up the minhash signature

and are stored in a partitioned training data structure with one partition for each

unique hashing function or no partitions when a single hashing function is used.

During training, each sequence word extracted is looked up within the training

data structure. New training data structure entries are created for any new words

identified while the optional frequency value is incremented when a word key already

exists. Multiple worker threads are operating at each stage of the map reduction ag-

gregation pipeline in parallel. The map, combiner, and reduce stages within map

reduction aggregation operate simultaneously exchanging intermediate data using

shared memory within each self-contained training node. This is highly advanta-

geous since all disk I/O is eliminated between each of the map, combiner, and reduce

stages. When processing very large volumes of input data, multiple training or classi-

fication nodes are deployed to reduce processing times and add additional processing

hardware within a Strand computing cluster.

During classification, the same map reduction aggregation method used for train-

ing also processes the classification input data. However, a classification function

process also calculates a similarity score between the map reduction aggregation out-

puts and one or more classes stored within the training data structure. When making

a multi-class prediction, the class with the highest similarity or the lowest distance

is selected. However, the framework is also capable of providing the similarity or

distance scores calculated for each of the individual classes. This is useful when input

102

data may align with multiple classes. For example, a lengthy gene sequence may

contain multiple known mutation classes which are highly similar.

Figure 4.9 also shows a Strand classification worker. All stages of map reduction

aggregation for the classification and training workers are the same. This is critical

since accurate classifications are only made when the summarized data produced by

map reduction aggregation for training and classification are created in an identical

manner. Outputs produced from the final reduce step are looked up within the train-

ing data structure locating matching keys and associated class frequencies as needed.

The map reduction aggregation output is processed according to the classification

function operations in order to determine a classification score for one or more classes

contained within the training data structure.

4.4.5. Strand Computing Clusters

While traditional MapReduce is commonly used for multicore machine learning

tasks [30, 61, 62], researchers [60, 101] now recognize the need for parallel machine

learning frameworks which strike a balance between the high-level parallel abstrac-

tions like MapReduce and lower level multicore development tools.

Gillick et. al. states that an ideal MapReduce style parallel machine learning im-

plementation should provide shared memory to all map tasks on a compute node [62].

Strand takes this idea one step further by exposing shared memory for all process-

ing stages required to create a consistently applied data preparation and aggregation

method for the purposes of training or classification during machine learning. In ad-

dition, Strand’s self-contained training and classification worker processes are easily

replicated to scale a machine learning process on any size computer or on any number

of commodity hardware machines operating within a cluster.

Both training and classification nodes may be replicated any number of times on

either a single server or multiple commodity hardware servers to increase machine

103

learning throughput. A unique benefit of a Strand machine learning cluster is that

classification and training worker processes require no inter-process communication

between workers dedicated to the same machine learning task. Once input data is

appropriately partitioned each classification and training worker process acts entirely

independent of other worker processes within the same framework.

In order to avoid inter-process communication between worker processes, the mas-

ter process equally divides larger input files into partitions prior to creating additional

workers. For each input data partition created, one or more Strand classification or

training workers are spawned in separate processes. When the “master” spawns each

new process, it specifies command line arguments including the location of the input

data and the operation to be performed (i.e. training or classification). The “mas-

ter” also specifies the output dataset location for each spawned worker and monitors

processing until all work is completed.

Once all worker processing is completed, the “master” performs the additional

step of combining the outputs of each worker. For example, the “master” combines

all training data structures created by one or more training workers into a single

consolidated training data structure. In some situations, a RAMDisk partition [19]

may be used to avoid loading and unloading training data structure partitions to and

from disk. In this scenario, the input data is read once from disk and training data

structure outputs are written to the RAMDisk to avoid multiple disk I/O operations

and drastically decrease processing times.

Since each training or classification worker is self contained and maintains its own

dedicated stack and processing threads, this greatly increases the overall parallelism

of the entire application. All MapReduce style processing pipeline data structures

experience reduced thread contention for access to intermediate pipeline data struc-

tures. In addition, multiple processing nodes can fully utilize processing resources

104

on a machine which may not be accessible when using only a single process due to

process level thread or stack size limitations.

The training data structure includes the consolidation of all processing outputs

using similar training or classification methods. Training data structures could also

be sharded or partitioned across any number of devices accessible to training or

classification workers connected to a distributed network such as a Network Attached

Storage (NAS) device, a Hadoop file system, or Spark’s Resilient Distributed Datasets.

Within Strand, all master or slave workers run as independent processes. Los-

ing the master does not impact any workers and vice versa. Therefore, when a

worker terminates for any reason, a missing output file indicates that an error has oc-

curred. Likewise, when a master terminates, it could simply be restarted. The master

can identify any missing outputs and rerun worker processes or combine transitional

worker outputs as needed to complete its task.

4.4.6. Results

In this section we first report on a set of experiments demonstrating the optimal

performance gained by using a Strand computing cluster even on a single machine.

Next, we challenge Strand by training on all known bacterial genomes in the National

Center for Biotechnology Information’s (NCBI) RefSeq database [128]. This training

dataset includes completed microbial genomes from the Bacteria and Archaea king-

doms and is almost 9.5GB in size. Finally, we compare Strand to the Kraken [157]

and CLARK [121] abundance estimation classifiers using the microbial metagenomics

dataset called “HiSeq” which was presented in [157]. All benchmarks were performed

using the Windows 8.1 pro operating system with dual Intel Xeon 2.6Ghz hexacore

processors, 24 hyper-threads, and 128GB of RAM.

105

Figure 4.10: CPU utilization for Strand using one Training Worker on 24 Virtual
Cores.

4.4.7. Strand Cluster Computing Benefits

One embodiment of Strand is shown in Figure 4.10 executing a single training

worker process. Figure 4.10 shows the framework executing 1160 threads with an

average CPU utilization of 15%. While the training worker process has ample input

data to process, it is limited by the parent process and unable to utilize much of the

resources available on the underlying hardware. In this case, processing a 396MB

training file takes approximately 7 hours and 35 minutes.

Figure 4.11 illustrates Strand training on the same hardware using ten training

workers. The server can clearly be seen operating at 100% CPU utilization while

using the same exact input data. In addition, using ten training workers with separate

processes effectively doubles the number of executing threads which are increased to

2311 active threads in Figure 4.11. Furthermore, memory utilization is pushed from

6GB to 27GB demonstrating the massive increase in processing throughput. This

is most noticeable in the training execution time which decreases to 1 hour and 19

106

Figure 4.11: CPU utilization for for Strand using Ten Training Workers on 24 Virtual
Cores.

minutes. This includes the time it takes the master process to combine all ten of the

training datasets produced by each of the ten training workers.

4.4.8. Strand vs. CLARK HiSeq Performance

The Strand application is designed for the Windows operating system. Other op-

erating systems are not supported at this time. While test versions of the application

have been ported to Linux using the C# compiler Mono [72], the compiler’s support

for highly parallel applications is limited and does not perform well on Linux as of

Mono version 3.5. Furthermore, the CLARK [121] abundance estimation classifier is

written in C++ and not supported on the Windows operating system. CLARK exe-

cutes using a single process which is highly tuned for optimal performance using the

the National Center for Biotechnology Information’s (NCBI) RefSeq database [128]

as input for training data.

4.4.9. Strand Training on the NCBI Complete RefSeq Database

Performance results for both the Kraken and CLARK Classifiers using the NCBI

107

RefSeq database [128] have been previously presented [121, 157]. In addition, the

CLARK classifier claims to be faster than Kraken [121] during classification and

training with similar levels of both precision and sensitivity. For reference, we have

included these benchmarks as well in Table 4.3. We also installed CLARK in default

mode on a Linux server with 24, Intel(R) Xeon(R) CPU X5690 @ 3.47GHz and

198GB of RAM. Since CLARK produces a list of all .fna files (“targets.txt”) used

during training, installing CLARK on our own linux server enabled training Strand

using exactly the same RefSeq input files CLARK used in default mode.

We now compare Strand to the CLARK classifier when using the National Center

for Biotechnology Information’s (NCBI) RefSeq database [128]. The results for Strand

presented below, used sequences and assigned taxonomy id’s from each of the files

contained within the CLARK “targets.txt” file. The benchmarks for CLARK using

these files are listed in Table 4.3 as “CLARK Default Mode”. Other results for both

CLARK and Kraken were obtained from Table S1 in [122]. While this is certainly

not an ideal comparison, these are reasonable results to review considering that the

three classifiers cannot execute on the same operating system.

RefSeq Training Benchmarks
Classifier Version Train Time (hh:mm) Disk Size GB Peak RAM

Strand 10% Sample 01:37:46 13.3 119
Strand 20% Sample 02:24:17 26.7 121
Strand 30% Sample 03:13:52 40.1 127

CLARK Default Mode 01:46:00 30 31.56
CLARK 02:45:00 42.4 167.9
Kraken 06:07:00 141.0 164.1

Table 4.3: Comparison of Strand, CLARK, and Kraken when training on the Refseq
Database.

Table 4.3 shows training times for Strand, CLARK default mode, CLARK, and

Kraken when using the NCBI RefSeq training data. Strand demonstrates reduced

108

training times for minhash value sample sizes up to 30% and also uses less space on

disk to save the training models created. During training, Strand has a substantially

reduced memory footprint. As previously mentioned, the memory footprint is also

entirely parameter configurable by specifying the number of worker processes and

input file splits used on a given machine. While Strand training times do increase as

input file splits increase, it is important to note that all of the training times reflected

in Table 4.3 were produced using dual Intel Xeon 2.6Ghz hexacore processors, 12

cores, 24 hyper-threads, and 128GB of RAM. With more memory available and less

the training input file splits, these training times could be substantially reduced. The

benchmarks taken for both CLARK and Kraken were executed on a Dell PowerEdge

T710 server using dual Intel Xeon X5660 2.8 Ghz processor chips, 12 cores, and 192

GB of RAM [121].

One key advantage Strand has over other classifiers is the ability to simply al-

ter the minhash sample size for any given training or classification execution. Both

Kraken and CLARK require multiple versions of their software which are tailored for

various features such as faster processing or a smaller training database footprint.

Changing the configurable worker processes, input file splits, and minhash sample

sizes, gives Strand users ultimate flexibility in managing the training database in

memory footprint, execution times, precision, and sensitivity levels. All strand train-

ing results shown in Table 4.3 were produced using 15 Strand training workers and 50

training input file splits of the NCBI RefSeq database. The training input file splits

are produced by providing all of the 4,345 NCBI RefSeq .fna files listed within the

CLARK “targets.txt” file as input to Strand. Strand then divides the file list into

50 equal parts for training worker processing. Strand can also be simply pointed at

a directory of .fna files for training. Each NCBI GI number is resolved from within

each .fna file and taxonomy id’s are assigned to the training data at any taxonomy

109

level. The input data file paths are then divided into equal input file splits.

subsectionStrand Classifying the“HiSeq” Dataset

The Strand and CLARK classifiers were used to classify the microbial metage-

nomics dataset called HiSeq [157] after training on the NCBI RefSeq database. CLARK

was installed in default mode on a Linux server with 24, Intel(R) Xeon(R) CPU

X5690 @ 3.47GHz and 198GB of RAM. The classification times listed in Table 4.4

represent lowest time achieved out of three runs. Initial results show both Stand

and CLARK performing with comparable precision at 98.3% and 98.7% respectively.

Both classifiers performed the 10,000 HiSeq classifications in under 2 seconds for all

configurations shown in Table 4.4.

HiSeq Classification Benchmarks
Classifier Load Time Classify Time Precision Sensitivity RAM GB

Strand 10% 00:13:58 1 sec 98.5% 66.8% 43
Strand 20% 00:33:26 1 sec 98.3% 69.3% 82
Strand 30% 01:19:18 00:01:36 98.1% 69.9% 127

CLARK Default 00:01:42 < 1 sec 98.7% 70.5% 70.1

Table 4.4: Comparison of Strand, CLARK, and Kraken when classifying the HiSeq
microbial metagenomics dataset. NOTE: The Strand 30% Sample left < 1GB of
memory for classification and likely caused disk thrashing witch degraded processing
time.

4.4.10. Conclusion

We have presented Strand (The Super Threaded Reference-Free Alignment-Free

Nsequence Decoder) which is a novel system and method for the shotgun classication

of gene sequence data into any number of associated categories or gene sequence tax-

onomies using highly scalable, multicore training and classification workers to exploit

shared memory, parallel processing pipelines and efficiently train and classify input

data. We demonstrate Strand’s effective use in high performance computing clusters

110

to process massive volumes of input data while still maintaining a very small training

database footprint and making classification predictions with very high sensitivity

and precision. Experimental results show that Strand is able to scale well using large

amounts of computing resources and perform classification on smaller laptop devices

using its full training database.

111

Chapter 5

DEVELOPING FEATURES FOR CYBERCRIME

I now provide a detailed discussion on developing features for cybercrime. This

chapter first explores features to identify replicated criminal websites which are loose

copies of one another that have been duplicated by criminals involved with both

Ponzi Schemes and Escrow Fraud. These features are used for an unsupervised ma-

chine learning technique called Optimized Combined Clustering which is presented

in Chapter 6. Next, a feature extraction framework for the identification of web-

sites selling counterfeit goods is discussed. In Chapter 7, websites selling counterfeit

goods are analyzed and classified using supervised machine learning techniques and

the features presented in Section 5.2.

5.1. Developing Features to Identify Replicated Criminal Websites

To be successful, cybercriminals must figure out how to scale their scams. They

duplicate content on new websites, often staying one step ahead of defenders that shut

down past schemes. For some scams, such as phishing and counterfeit-goods shops,

the duplicated content remains nearly identical. In others, such as advanced-fee fraud

and online Ponzi schemes, the criminal must alter content so that it appears different

in order to evade detection by victims and law enforcement. Nevertheless, similarities

often remain, in terms of the website structure or content, since making truly unique

copies does not scale well.

In this section, we present automated methods to extract key website features, in-

cluding rendered text, HTML structure, file structure and screenshots. We describe a

112

process to automatically identify the best combination of such attributes to most ac-

curately cluster similar websites together in Chapter 6. To demonstrate the method’s

applicability to cybercrime, we evaluate its performance against two collected datasets

of scam websites: fake-escrow services and high-yield investment programs (HYIPs).

We show that our method more accurately groups similar websites together than does

existing general-purpose consensus clustering methods using the features we describe

in this chapter.

5.1.1. Process for Identifying Replicated Criminal Website Features

We now describe a general-purpose method for identifying the best features to

cluster together replicated criminal websites. We provide a high-level overview, which

is now briefly presented before each step is discussed in greater detail in the following

sections. The implementation of optimized combined clustering for these websites is

also discussed in detail within Chapter 6.

Steps for Developing Features to Identify Replicated Criminal Websites:

1. URL Crawler: Raw information on websites is gathered.

2. URL Feature Extraction: Complementary attributes such as website text

and HTML tags are extracted from the raw data for each URL provided.

3. Input attribute feature files: Extracted features for each website are saved

into individual features files for efficient pairwise distance calculation.

4. Distance matrices: Pairwise distances between websites for each attribute

are computed using Jaccard distance metrics.

Step 1 is described in Section 5.1.2. Steps 2 and 3 are described in Section 5.1.7,

while step 4 is described in Section 5.1.8.

113

5.1.2. Data Collection Methodology

In order to demonstrate the generality of our clustering approach discussed in

Chapter 6, we collect datasets on two very different forms of cybercrime: online

Ponzi schemes known as High-Yield Investment Programs (HYIPs) and fake-escrow

websites. In both cases, we fetch the HTML using wget. We followed links to a depth

of 1, while duplicating the website’s directory structure. All communications were

run through the anonymizing service Tor [44].

Data Source 1: Online Ponzi schemes We use the HYIP websites identified by

Moore et al. in [114]. HYIPs peddle dubious financial products that promise unreal-

istically high returns on customer deposits in the range of 1–2% interest, compounded

daily. HYIPs can afford to pay such generous returns by paying out existing deposi-

tors with funds obtained from new customers. Thus, they meet the classic definition

of a Ponzi scheme. Because HYIPs routinely fail, a number of ethically question-

able entrepreneurs have spotted an opportunity to track HYIPs and alert investors

to when they should withdraw money from schemes prior to collapse. Moore et al.

repeatedly crawled the websites listed by these HYIP aggregators, such as hyip.com,

who monitor for new HYIP websites as well as track those that have failed. In all,

we have identified 4 191 HYIP websites operational between November 7, 2010 and

September 27, 2012.

Data Source 2: Fake-escrow websites A long-running form of advanced-fee fraud

is for criminals to set up fraudulent escrow services [113] and dupe consumers with

attractively priced high-value items such as cars and boats that cannot be paid for

using credit cards. After the sale the fraudster directs the buyer to use an escrow

service chosen by the criminal, which is in fact a sham website. A number of volun-

teer groups track these websites and attempt to shut the websites down by notifying

hosting providers and domain name registrars. We identified reports from two lead-

114

ing sources of fake-escrow websites, aa419.org and escrow-fraud.com. We used

automated scripts to check for new reports daily. When new websites are reported,

we collect the relevant HTML. In all, we have identified 1 216 fake-escrow websites

reported between January 07, 2013 and June 06, 2013.

For both data sources, we expect that the criminals behind the schemes are fre-

quently repeat offenders. As earlier schemes collapse or are shut down, new websites

emerge. However, while there is usually an attempt to hide evidence of any link

between the scam websites, it may be possible to identify hidden similarities by in-

specting the structure of the HTML code and website content. We next describe a

process for identifying such similarities.

5.1.3. Feature Extraction Processing

Using a highly parallel producer-consumer style pipeline program called “the creeper”;

each targeted website’s structure was interrogated extracting HTML, displayed text,

file names, and screen shots. The extracted data was then stored in individual direc-

tories and files at both the webpage and entire website level (when applicable). For

example, website level HTML files would contain all HTML for all webpages in an

entire website within one text file named www.websitename.com.txt.

Further processing was then performed by “the creeper” to extract the more tar-

geted features from this high-level stage 1 input data. Performing the stage 1 high-

level data organization allowed us to test the accuracy of several different feature

data extraction methods prior to selecting three targeted features for clustering which

were the optimal predictors of our ground truth data. Stage 1 high-level data extrac-

tions were first performed using a custom “headless” browser adapted from the Watin

package for C#1. However, when screen shots were collected, eight Selenium Firefox
1http://www.watin.org

115

http://www.watin.org

browsers were executed in parallel for this task 2.

5.1.4. Selecting an Appropriate Distance Metric

Candidate features were written to files at the website and webpage level com-

prising separate directories for each candidate feature. All directories, files, and file

naming conventions are arranged in a manner conducive to performing set based

distance metric calculations between all files within a particular directory.

Given this arrangement an infinite number of distance metric calculations can be

performed by considering each file within the directory as a set and each line within

the file as an item within the set. Set intersections and unions can easily be performed

by loading file contents into memory for set comparisons. Furthermore, dot products

and magnitudes can be efficiently calculated making the calculation of both Jaccard

and Cosine distances between files performance optimal.

The proposed arrangement also facilitates processing all files and performing such

calculations in parallel using the map reduce style framework previously described in

Chapter 2. The high-level data organization also allows for more intensive distance

based calculations such as Edit Distance using portions of the displayed text, HTML,

or File names.

Jaccard, Cosine and Edit Distance metrics were deployed by the creeper program

to create input attribute distance matrices using each input attribute directory and

calculating the distances between all files included within the targeted directory.

5.1.5. Map Reducing Distance Matrices

The creeper program includes map reduce style processing pipelines which are

provided for the rapid parallel processing and classification of extremely large vol-

umes of targeted data which allows programmers to create and deploy application
2http://www.seleniumhq.org/

116

http://www.seleniumhq.org/

specific map reduction aggregation methods and classification metric functions uti-

lizing various distance metrics. The map reduction aggregation methods specify how

targeted input data will be aggregated within the current system.

Targeted input data is consistently dissected by the mapping processes into in-

dividual, independent units of intermediate work typically comprising consistently

mapped data keys and values that are conducive to simultaneous parallel reduc-

tion processing. The reduction methods continually and simultaneously aggregate

or reduce the mapped data keys and values by eliminating the matching keys and

aggregating the corresponding values consistent with the reduction operations for all

matching keys which are encountered during map reduction processing.

In the case of map reducing website sentences, sentences extracted from each

website’s displayed text are accessed and read into memory from each file within the

displayed website text sentences directory. A separate background thread is then used

to process each sentence set in parallel creating matches that require distance calcula-

tions between all website sentence files contained within the sentences directory. Each

“match” is placed into a thread-safe blocking collection where a secondary background

process manages threads which are continually consuming the matches and perform-

ing the distance calculations between sentence files using the specified distance metric

(in this case Jaccard or Cosine Distance). Finally, matches are organized into a dis-

tance matrix and each distance matrix line is written to comma delimited file which

can easily be imported into R for clustering processes as described in Chapter 2.

5.1.6. Identifying and Extracting Website Features

We identified four primary features of websites as potential indicators of similarity:

displayed text, HTML tags, directory file names, and image screenshots. These are

described in Section 5.1.7. In Section 5.1.8 we explain how the features are computed

in a pairwise distance matrix.

117

5.1.7. Website Features

Website Text To identify the text that renders on a given webpage, we used a cus-

tom “headless” browser adapted from the Watin package for C#3. We extracted text

from all pages associated with a given website, then split the text into sentences using

the OpenNLP sentence breaker for C#. Additional lower level text features were also

extracted such as character n-grams, word n-grams, and individual words for simi-

larity benchmarking. All text features were placed into individual bags by website.

Bags for each website were then compared to create pairwise distance matrices for

clustering.

HTML Content Given that cybercriminals frequently rely on kits with similar

underlying HTML structure [117], it is important to check the underlying HTML

files in addition to the rendered text on the page. A number of choices exist, ranging

from comparing the document object model (DOM) tree structure to treating tags

on a page as a set of values. From experimentation, we found that DOM trees were

too specific, so that even slight variations in otherwise similar pages yielded different

trees. We also found that sets of tags did not work well, due to the limited variety of

unique html tags. We found a middle way by counting how often a tag was observed

in the HTML files.

All HTML tags in the website’s HTML files were extracted, while noting how

many times each tag occurs. We then constructed a compound tag with the tag

name and its frequency. For example, if the “
” tag occurs 12 times within the

targeted HTML files, the extracted feature value would be “
12”.
3http://www.watin.org

118

http://www.watin.org

File Structure We examined the directory structure and file names for each web-

site since these could betray structural similarity, even when the other content has

changed. However, some subtleties must be accounted for during the extraction of

this attribute. First, the directory structure is incorporated into the filename (e.g.,

admin/home.html). Second, since most websites include a home or main page given

the same name, such as index.htm, index.html, or Default.aspx, websites com-

prised of only one file may in fact be quite different. Consequently, we exclude the

common homepage file names from consideration for all websites. Unique file names

were placed into bags by website and pairwise distances were calculated between all

websites under consideration.

Website Screenshot Images Finally, screenshots were taken for each website

using the Selenium automated web browser for C#4. Images were resized to 1000

x 1000 pixels. We calculated both vertical and horizontal luminosity histograms for

each image. Image luminosity features and similarity measures were determined using

the Eye.Open image library for C#5. During image feature extraction, the red, green,

and blue channels for each image pixel were isolated to estimate relative luminance,

and these values were then aggregated by each vertical and horizontal image pixel

row to calculate two luminosity histograms for each image.

5.1.8. Constructing Distance Matrices

For each input attribute, excluding images, we calculated both Jaccard and Cosine

distances between all pairs of websites creating pairwise distance matrices for each

input attribute and distance measure. During evaluation it was determined that

Jaccard distance was the most accurate metric for successfully identifying criminal
4http://www.seleniumhq.org/
5https://similarimagesfinder.codeplex.com/

119

http://www.seleniumhq.org/
https://similarimagesfinder.codeplex.com/

website replications.

The Jaccard distance between two sets S and T is defined as 1- J(S, T), where:

J(S, T) =
|S ∩ T |
|S ∪ T |

Consider comparing website similarity by sentences. If website A has 50 sentences

in the text of its web pages and website B has 40 sentences, and they have 35 in

common, then the Jaccard distance is 1− J(A,B) = 1− 35
65

= 0.46.

Website screenshot images were compared for both vertical and horizontal similar-

ity using luminosity histograms. The luminosity histograms for each matched image

pair were compared for similarity by calculating the weighted mean between both the

vertical and horizontal histograms. Next, both the average and maximum similarity

values between histograms were empirically evaluated for clustering accuracy. Taking

the average similarity score between the vertical and horizontal histograms performed

best during our evaluation. Once the average vertical and horizontal similarity score

was determined, then the pairwise image distance was calculated as 1 - the pairwise

image similarity.

Distance matrices were created in parallel for each input attribute by “mapping”

website input attributes into pairwise matches, and then simultaneously “reducing”

pairwise matches into distances using the appropriate distance metric. The pairwise

distance matrices were chosen as output since they are required input for the hierar-

chical agglomerative clustering process used during the optimized clustering process

presented in Chapter 6.

5.2. Developing Features to Identify Websites Selling Counterfeit Goods

We now present a methodology for collecting data on the prevalence of counterfeit

goods in web search. We build an accurate classifier using features automatically

120

extracted from website content that distinguishes legitimate from fake sellers based

upon data returned by search results in Chapter 7. We investigate the practice

of websites selling counterfeit goods. We inspect web search results for 225 queries

across 25 brands. In Chapter 7, we also devise a binary classifier that predicts whether

a given website is selling counterfeits by examining automatically extracted features

such as WHOIS information, pricing and website content. We then apply the classifier

to results collected between January and August 2014. We find that, overall, 32% of

search results point to websites selling fakes.

For ‘complicit’ search terms, such as “replica rolex”, 39% of the search results

point to fakes, compared to 20% for ‘innocent’ terms, such as “hermes buy online”.

Using a linear regression, we find that brands with a higher street price for fakes have

higher incidence of counterfeits in search results, but that brands who take active

countermeasures by filing DMCA requests experience lower incidence of counterfeits

in search results. Finally, we study how the incidence of counterfeits evolves over

time, finding that the fraction of search results pointing to fakes remains remarkably

stable.

In the following sections we describe the data collection methodology and features

used to classify websites selling counterfeit goods. In Chapter 7, we use these features

to identify counterfeit retailers and explore how such features can be used to identify

and combat the sale of counterfeit goods.

5.2.1. Data Collection Methodology

Researchers have extensively studied the online sale of unlicensed pharmaceuti-

cals [90, 94, 100,105], as well as the unauthorized acquisition of digital goods such as

music, movies and software [81,137]. We decided to focus instead on the sale of coun-

terfeit consumer physical goods, due to its prevalence and relative lack of attention

from the research community.

121

5.2.2. Constructing Search Queries

We first had to decide on which brands to focus our investigation. We began by

collecting data on five seed brands: Ugg, Coach, Rolex, Hermes, and Oakley. After

gathering search results on associated queries, we scraped all product listing pages

from 68 stores manually identified as selling counterfeits. We decided to focus on the

25 most observed brands in the inventories of the confirmed counterfeit stores.

We are very interested in measuring the extent to which consumers intending to

buy from authorized retailers are instead presented with links to websites selling fakes.

To that end, the 25 brands were then paired with search terms of varying levels of

“innocence”. We selected three search terms for each innocence level: innocent, grey,

and complicit. We deem as innocent the keywords “fast delivery,” “buy online” and

the lack of keyword (meaning the query is only the product name). We deem the

keywords “replica,” “fake,” and “knockoff” as complicit, as any shopper using those

terms is clearly seeking out counterfeited goods. Between these extremes lie grey

keywords “cheap,” “discount,” and “sale”, since there is ambiguity as to the intention

of the shopper. In total, we combine all 25 brands with each of the 9 keywords to

yield 225 unique search queries.

5.2.3. Gathering Data on Websites in Search Results

We automatically issued queries to the Google Custom Search API to obtain

the top 100 results for each of the 225 terms.6 We then visited the URLs using an

automated browser, storing the HTML and a screenshot.

When the automated browser visited the search results, a script checked for the

presence and properties of elements we believe to be indicative of malicious intent.
6We note that the results returned by the Custom Search API are not identical to those obtained

via Google’s website. Because Google’s Terms of Service prohibit automated collection of search
results from its website, we elected to use the API instead. Given the advent of personalized search,
it is impossible to collect the exact search results that will be presented to all users.

122

The elements observed were IFrames, currencies, and pricing information.

We removed price outliers triggered by parsing errors or ambiguities in brand

names (e.g., searches for Coach purses can also return advertisements for buses). We

also converted non-US currency to US dollars for consistency.

Pricing data was found using regular expressions and a combination of currency

symbols, and price associations were found (for example a product might contain both

an “original price” and a “discount price”) by locating individual prices and climbing

the DOM structure. We also fetched the WHOIS data for each website, extracting

the date and country of registration, as well as whether or not a privacy or proxy

registration had been used [34].

We note that many shops attempt to hide their true nature to search engines by

“cloaking” or by redirecting from a hacked website to a shop selling fakes. We deal

with this problem by inspecting the destination website as presented to a browser.

As described in the next section, we do build features that indirectly check for this

malicious behavior, e.g., by also visiting the top-level page that is unlikely to be

cloaked or to redirect elsewhere.

We gathered data in two distinct periods. An initial study carried out in January

2014 identified 21 646 search results and 6 979 distinct websites. To inspect for changes

in behavior over time, we reissued the same queries weekly between June and August

2014.

5.2.4. Feature Selection and Extraction

We constructed features after inspecting many websites selling counterfeit goods.

We focus on three classes of features: URL-level, page-level, and website-level fea-

tures.

URL-level features The least resource-intensive approach is to select features based

123

upon only the URL. This approach has been used to identify phishing websites [21]

and malware [102].

1. Replica in FQDN

This Boolean feature identifies when the term “replica” is contained as part of

the web page’s fully qualified domain name (FQDN). We also considered the

term “knockoff”, but that was often associated with articles and blogs decrying

counterfeits.

2. Length of FQDN

This numeric feature denotes the number of characters present in the URL’s

fully qualified domain name. Websites selling fakes frequently use subdomains

concatenating several words.

Page-level features We also inspected the scraped HTML content to identify addi-

tional features indicating that counterfeits may be sold.

1. Number of Currencies Seen

Unlike most big box retailers which offer custom websites for each country

serviced, counterfeit goods websites typically offer a single unified site which

is designed to service any number of countries. Furthermore, it is uncommon

for these sites to implement their own custom payment vehicles. Most of the

third party payment solutions deployed offer checkout alternatives which include

providing payment in a large variety of currencies.

2. Large IFrames

Unusually positioned and sized IFrames are used to obfuscate malicious scripts

and redirections common in criminal websites [27,104]. We define large IFrames

as having unusually large height and width in addition to containing a different

top level domain which is also not part of the Alexa top 1000 domains [1].

124

3. Percent Savings Average

This numeric feature indicates the average percentage of savings on a given

webpage. This is relevant on online stores whose pricing data was able to be

scraped automatically, in the case where two prices were listed in association

with at least one item (an “original” price and their price, to demonstrate the

savings). The average of the savings percentages on a given page is stored in

the hopes of finding counterfeit stores offering ludicrously high savings.

4. Number of Times Duplicate Price Seen

This numeric feature specifies the number of times a duplicate price was seen

on a given page. For example, a page with various products listed at prices $40,

$45, $40, $50, $40, and $45 has 3 duplicate prices present ($40 is repeated twice

and $45 is repeated once). This feature was included to catch lazy counterfeit

store owners who copy and paste products, changing titles but not prices.

5. Page Contains Webmail Address

This Boolean feature identifies when a webpage contains an email address which

includes the text “@yahoo.com”, “@gmail.com”, or “@hotmail.com”. It would be

highly unusual for a legitimate brand reseller to utilize a free webmail account.

6. Unique Brand Mention Count

The unique brand mention count represents the number of unique brand men-

tions identified within the webpage’s HTML content. Counterfeit websites often

stuff their pages with multiple brand mentions, in hopes of promoting the web-

site in search results.

7. Top-Level Page Mentions Brand

We also visited the top-level web page to look for the mention of any brand (a

string search for any of the brands in the root page’s text). It indicates that a

website may have been hacked if the top-level page makes no mention of any

125

brands while the page listed in the search results does. A website hacked to

host or redirect to a store is almost certainly selling counterfeits.

8. Content Consistent with Takedown Page

This Boolean feature identifies when a webpage has been taken down and re-

placed with content from brand-enforcement companies.

Website-level features The final category of features were those describing char-

acteristics of the website itself, as opposed to the displayed content.

1. Private or China-registered WHOIS

While legitimate companies use private and proxy WHOIS registrations [35], it

is frequently employed by those conducting dubious operations such as selling

counterfeit goods. Furthermore, we observed that many websites selling replicas

have operations based in China.

2. WHOIS Registration Age Under 1 Year

This Boolean feature identifies when a webpage is less than one year old. Coun-

terfeit websites often rely on newly registered domains, which replace older ones

that have been suspended.

3. Website In Alexa Top 100K

This Boolean feature identifies when a webpage is ranked in the top one hundred

thousand websites by Alexa based on the webpage’s web traffic. We expect

counterfeit pages to draw in less traffic than licensed retailers.

5.3. Conclusion

In the following two chapters, we present research which utilizes the features

discussed in this chapter to solve real world problems related to Cybercrime. In

Chapter 7, we build supervised classifiers to detect websites selling counterfeit goods

126

using Logistic Regression, Adaptive Boosting, and Support Vector Machine models.

We demonstrate that such features can successfully identify these criminal websites

with high levels of accuracy. Chapter 6 applies the features discussed in Section 5.1 to

identify repeat offenders creating loose copies of both Ponzi Scheme and Escrow Fraud

related websites. Each of these chapters also utilize implementations of the Collab-

orative Analytics Framework to produce highly efficient feature sets for Cybercrime

related data.

127

Chapter 6

IDENTIFICATION OF PONZI SCHEME AND ESCROW FRAUD WEBSITES

6.1. Introduction and Background

Cybercriminals have adopted two well-known strategies for defrauding consumers

online: large-scale and targeted attacks. Many successful scams are designed for

massive scale. Phishing scams impersonate banks and online service providers by the

thousand, blasting out millions of spam emails to lure a very small fraction of users

to fake websites under criminal control [58,112]. Miscreants peddle counterfeit goods

and pharmaceuticals, succeeding despite very low conversion rates [82]. The criminals

profit because they can easily replicate content across domains, despite efforts to

quickly take down content hosted on compromised websites [112]. Defenders have

responded by using machine learning techniques to automatically classify malicious

websites [127] and to cluster website copies together [13,89,95,152].

Given the available countermeasures to untargeted large-scale attacks, some cy-

bercriminals have instead focused on creating individualized attacks suited to their

target. Such attacks are much more difficult to detect using automated methods,

since the criminal typically crafts bespoke communications. One key advantage of

such methods for criminals is that they are much harder to detect until after the

attack has already succeeded.

Yet these two approaches represent extremes among available strategies to cyber-

criminals. In fact, many miscreants operate somewhere in between, carefully replicat-

ing the logic of scams without completely copying all material from prior iterations of

128

the attack. For example, criminals engaged in advanced-fee frauds may create bank

websites for non-existent banks, complete with online banking services where the vic-

tim can log in to inspect their “deposits”. When one fake bank is shut down, the

criminals create a new one that has been tweaked from the former website. Similarly,

criminals establish fake escrow services as part of a larger advanced-fee fraud [113].

On the surface, the escrow websites look different, but they often share similarities

in page text or HTML structure. Yet another example is online Ponzi schemes called

high-yield investment programs (HYIPs) [114]. The programs offer outlandish inter-

est rates to draw investors, which means they inevitably collapse when new deposits

dry up. The perpetrators behind the scenes then create new programs that often

share similarities with earlier versions.

The designers of these scams have a strong incentive to keep their new copies

distinct from the old ones. Prospective victims may be scared away if they realize

that an older version of this website has been reported as fraudulent. Hence, the

criminals make a more concerted effort to distinguish their new copies from the old

ones.

While in principle the criminals could start over from scratch with each new

scam, in practice it is expensive to recreate entirely new content repeatedly. Hence,

things that can be changed easily are (e.g., service name, domain name, registration

information). Website structure (if coming from a kit) or the text on a page (if the

criminal’s English or writing composition skills are weak) are more costly to change,

so only minor changes are frequently made.

The purpose of this paper is to design, implement, and evaluate a method for clus-

tering these “logical copies” of scam websites. Section 6.2 gives a high-level overview

of the combined clustering process. In Section 5.1.2 we describe two sources of data

on scam websites used for evaluation: fake-escrow websites and HYIPs. Next, Sec-

129

tion 5.1.6 details how individual website features such as HTML tags, website text,

file structure and image screenshots are extracted to create pairwise distance matrices

comparing the similarity between websites. In Section 6.3 we outline two optimized

combined clustering methods that takes all website features into consideration in or-

der to link disparate websites together. We describe a novel method of combining

distance matrices by selecting the minimum pairwise distance. We then evaluate the

method compared to other approaches in the consensus clustering literature and cy-

bercrime literature to demonstrate its improved accuracy in Section 6.4. In Section 6.5

we apply the method to the entire fake-escrow and HYIP datasets and analyze the

findings. We review related work in Section 6.6 and conclude in Section 6.7.

Dom

Tags

URL Feature

Extraction

Screen

Shots

Sentences

File

Names

URL

Crawler

Matrix

Builder

Dom Tags

Matrix

Sentences

Matrix
File Names

Matrix

Screenshots

Matrix

Combined

Matrices

Individual

Clusterings

Per URL Input Attribute Feature Files

Sentences File Names Screen Shots Dom Tags

Combined

Clusterings

Cut Height

Optimization

Top Performer Selected

Figure 6.1: High-level diagram explaining how the method works.

130

6.2. Process for Identifying Replicated Criminal Websites

This paper describes a general-purpose method for identifying replicated websites.

Figure 6.1 provides a high-level overview, which is now briefly described before each

step is discussed in greater detail in the following sections.

1. URL Crawler: Raw information on websites is gathered.

2. URL Feature Extraction: Complementary attributes such as website text

and HTML tags are extracted from the raw data for each URL provided.

3. Input attribute feature files: Extracted features for each website are saved

into individual features files for efficient pairwise distance calculation.

4. Distance matrices: Pairwise distances between websites for each attribute

are computed using Jaccard distance metrics.

5. Individual Clustering: Hierarchical, agglomerative clustering methods are

calculated using each distance matrix, rendering distinct clusterings for each

input attribute.

6. Combined Matrices: Combined distance matrices are calculated using vari-

ous individual distance matrix combinations.

7. Ground Truth Selection: Criminal websites are manually divided into repli-

cation clusters and used as a source of ground truth.

8. Cut Height Optimization: Ground truth clusters are used in combination

with the Rand Index to identify the optimal clustering cut height for each input

attribute.

9. Combined Clustering: Hierarchical, agglomerative clustering methods are

calculated using each combined distance matrix to arrive at any number of

multi-feature clusterings.

131

10. Top Performer Selection: The Rand Index is calculated for all clusterings

against the ground truth to identify the top performing individual feature or

combined feature set.

Step 1 is described in Section 5.1.2. Steps 2 and 3 are described in Section 5.1.7,

while step 3 is described in Section 5.1.8. Finally, the clustering steps (5–10) are

described in Section 6.3.

6.3. Optimized Combined Clustering Process

Once we have individual distance matrices for each input attribute as described

in the previous section, the next step is to build the clusters. We first describe two

approaches for automatically selecting cut-heights for agglomerative clustering: dy-

namic cut height, which is unsupervised, and optimized cut height, which is supervised.

Next we compute individual clusterings based on each input attribute. Finally, we

construct combined distance matrices for combinations of input attributes and cluster

based on the combined matrices.

6.3.1. Cluster Cut-Height Selection

We use a hierarchical agglomerative clustering algorithm [78] to cluster the web-

sites based on the distance matrices. During HAC, a cut height parameter is required

to determine the dissimilarity threshold at which clusters are allowed to be merged to-

gether. This parameter greatly influences the clustering accuracy, as measured by the

Rand index, of the final clusters produced. For instance, using a very high cut height

or dissimilarity threshold would result in most websites being included in one giant

cluster since a weak measure of similarity is enforced during the merging process.

Traditionally, a static cut height is selected based on the type of data being clus-

tered. Because website input attributes can have very different similarities and still be

132

related, we deploy two methods for automatically selecting the optimal cut heights,

one unsupervised and one supervised. In instances where no dependable source of

ground truth data is readily available, we use a dynamic cut height based on the al-

gorithm using described in [88]. While the dynamic cut height produces satisfactory

results when no ground truth information is available, a better strategy is available

where reliable sources of ground truth are present.

Using optimized cut height, the best choice is found using the Rand Index as

a performance measure for each possible cut height parameter value from 0.01 to

0.99. This approach performs clustering and subsequent Rand Index scoring at all

possible dendogram height cutoffs using supervised cut height training on the ground

truth data. The resulting cut height selected represents the dissimilarity threshold

which produces the most accurate clustering results against the ground truth data

according to the Rand Index score. For example, fake-escrow website HTML tags

produce clusterings with Rand Index scores ranging from 0 to 97.9% accuracy while

varying only the cut height parameter. Fiigure 6.3 shows fake-escrow website HTML

tags generating the highest Rand Index score of 0.979 at a cut height of 0.73 with the

Rand Index score quickly descending back to 0 as the cut height is increased from

0.73 to 1.00. Other fake-escrow website input attributes such as sentences, file names,

and images, produce their highest Rand Index scores at differing cut height values

(0.86, 0.67, 0.29 respectively).

These results detailed in Section 6.4.2 demonstrate that the optimized cut height

approach produces more accurate clusters than dynamic cut height selection, pro-

vided that suitable ground truth data is available to find the recommended heights.

Furthermore, we also note that the optimized cut height approach to perform more

consistently, selecting the same top performing input attributes during training and

testing executions on both data populations.

133

6.3.2. Individual Clustering

Because different categories of criminal activity may betray their likenesses in

different ways, we need a general process that can select the best combination of

input attributes for each dataset. We cannot know, a priori, which input attributes

are most informative in revealing logical copies. Hence, we start by clustering on

each individual attribute independently, before combining the input attributes as

described below. It is indeed quite plausible that a single attribute better identifies

clusters than does a combination. The clusters are selected using the two cut-height

methods outlined above.

6.3.3. Best Min Combined Clustering

While individual features can often yield highly accurate clustering results, dif-

ferent individual features or even different combinations of multiple features may

perform better across different populations of criminal websites as our results will

show. Combining multiple distance matrices into a single “merged” matrix could be

useful when different input attributes are important.

However, combining orthogonal distance measures into a single measure must

necessarily be an information-lossy operation. A number of other consensus clustering

methods have been proposed [4, 43, 57, 64], yet as we will demonstrate in the next

section, these algorithms do not perform well when linking together replicated scam

websites, often yielding less accurate results than clusterings based on individual input

attributes.

134

Figure 6.2: Examples of replicated website content and file structures for the HYIP
dataset.

Consequently, we have developed a simple and, in practice, more accurate ap-

proach to combining the different distance matrices. We define the pairwise distance

between two websites a and b as the minimum distance across all input attributes.

The rationale for doing so is that a website may be very different across one mea-

sure but similar according to another. Suppose a criminal manages to change the

textual content of many sentences on a website, but uses the same underlying HTML

code and file structure. Using the minimum distance ensures that these two websites

are viewed as similar. Figure 6.2 demonstrates examples of both replicated website

content and file structures. The highlighted text and file structures for each website

displayed are nearly identical. One could also imagine circumstances in which the

average or maximum distance among input attributes was more appropriate. We cal-

culate those measures too, but found that the minimum approach worked best and

so only those results are reported.

We created combined distance matrices for all possible combinations of distance

matrices. In the case of the four input attributes considered in this paper, that means

135

we produced eleven combined matrices (sentences and DOM tags, sentences and file

structures, sentences and images, DOM tags and file structures, DOM tags and im-

ages, file structure and images, sentences and DOM tags an file structure, sentences

and DOM tags and images, sentences and file structures and images, DOM tags

and file structures and images, plus sentences and DOM tags and file structures and

images). In situations where many additional features are used, several specifically

targeted feature combinations could also be identified for creating a limited number

of combined distance matrices.

Combined clusterings are computed for each combined distance matrix using both

cut-height selection methods. Ultimately, the top performing individual attribute or

combination is selected based on the accuracy observed when evaluating the labeled

training data set.

6.4. Evaluation Against Ground-Truth Data

One of the fundamental challenges to clustering logical copies of criminal websites

is the lack of ground-truth data for evaluating the accuracy of automated methods.

Some researchers have relied on expert judgment to assess similarity, but most forego

any systematic evaluation due to a lack of ground truth (e.g., [91]). We now describe

a method for constructing ground truth datasets for samples of fake-escrow services

and high-yield investment programs.

We developed a software tool to expedite the evaluation process. This tool enabled

pairwise comparison of website screenshots and input attributes (i.e., website text

sentences, HTML tag sequences and file structure) by an evaluator.

136

Fake-Escrow Services
Dynamic Cut Height Optimized Cut Height
Train Test Train Test

Sentences 0.107 0.289 0.982 0.924
Dom Tags 0.678 0.648 0.979 0.919
File Names 0.094 0.235 0.972 0.869
Images 0.068 0.206 0.325 0.314
S & D 0.942 0.584 0.982 0.925
S & F 0.120 0.245 0.980 0.895
S & I 0.072 0.257 0.962 0.564
D & F 0.558 0.561 0.979 0.892
D & I 0.652 0.614 0.599 0.385
F & I 0.100 0.224 0.518 0.510
S & D & F 0.913 0.561 0.980 0.895
S & D & I 0.883 0.536 0.971 0.673
S & F & I 0.100 0.214 0.975 0.892
D & F & I 0.642 0.536 0.831 0.772
S & D & F & I 0.941 0.536 0.971 0.683

High-Yield Investment Programs
Dynamic Cut Height Optimized Cut Height
Train Test Train Test

Sentences 0.713 0.650 0.738 0.867
Dom Tags 0.381 0.399 0.512 0.580
File Names 0.261 0.299 0.254 0.337
Images 0.289 0.354 0.434 0.471
S & D 0.393 0.369 0.600 0.671
S & F 0.291 0.310 0.266 0.344
S & I 0.290 0.362 0.437 0.471
D & F 0.309 0.358 0.314 0.326
D & I 0.302 0.340 0.456 0.510
F & I 0.296 0.289 0.397 0.336
S & D & F 0.333 0.362 0.319 0.326
S & D & I 0.319 0.350 0.459 0.510
S & F & I 0.303 0.289 0.398 0.336
D & F & I 0.320 0.337 0.404 0.405
S & D & F & I 0.320 0.337 0.404 0.405

(a) Adjusted Rand index for different clusterings,
varying the number of input attributes considered.

Escrow HYIPs

Minimum 0.683 0.405
Average 0.075 0.443
Max 0.080 0.623
Best Min. 0.985 0.867
DISTATIS 0.070 0.563
Clue SE 0.128 0.245
Clue DWH 0.126 0.472
Clue GV3 0.562 0.508
Clue soft/symdiff 0.095 0.401
Click trajectories [95] 0.022 0.038

(b) Adjusted Rand index
for different clusterings.

Table 6.1: Table evaluating various consensus and combined clustering methods
against ground truth dataset.

6.4.1. Performing Manual Ground Truth Clusterings

After the individual clusterings were calculated for each input attribute, websites

could be sorted to identify manual clustering candidates which were placed in the

exact same clusters for each individual input attribute’s automated clustering. Pop-

ulations of websites placed into the same clusters for all four input attributes were

used as a starting point in the identification of the manual ground truth clusterings.

137

These websites were then analyzed using the comparison tool in order to make a final

assessment of whether the website belonged to a cluster. Multiple passes through

the website populations were performed in order to place them into the correct man-

ual ground truth clusters. When websites were identified which did not belong in

their original assigned cluster, these sites were placed into the unassigned website

population for further review and other potential clustering opportunities.

Deciding when to group together similar websites into the same cluster is in-

herently subjective. We adopted a broad definition of similarity, in which sites were

grouped together if they shared most, but not all of their input attributes in common.

Furthermore, the similarity threshold only had to be met for one input attribute. For

instance, HYIP websites are typically quite verbose. Many such websites contain 3 or

4 identical paragraphs of text, along with perhaps one or two additional paragraphs

of completely unique text. For the ground-truth evaluation, we deemed such websites

to be in the same cluster. Likewise, fake-escrow service websites might appear visu-

ally identical in basic structure for most of the site. However, a few of the websites

assigned to the same cluster might contain extra web pages not present in the others.

We note that while our approach does rely on individual input attribute clusterings

as a starting point for evaluation, we do not consider the final combined clustering in

the evaluation. This is to maintain a degree of detachment from the combined clus-

tering method ultimately used on the datasets. We believe the manual clusterings

identify a majority of clusters with greater than two members. Although the man-

ual clusterings contain some clusters including only two members, manual clustering

efforts were ended when no more clusters of greater than two members were being

identified.

138

6.4.2. Results

In total, we manually clustered 687 of the 4 188 HYIP websites and 684 of the

1 220 fake-escrow websites. The manually clustered websites were sorted by the date

each website was identified, and then both datasets were divided into training and

testing populations of 80% and 20% respectively. The test datasets represented 20%

of the most recent websites identified within both the fake-escrow services and HYIP

datasets. Both datasets were divided in this manner to effectively simulate the opti-

mized combined clustering algorithm’s performance in a real world setting.

In such a scenario, ground truth data would be collected for some period of time

and used as training data. Once the training dataset was complete, Rand Index opti-

mized cut heights and top performing individual or combined input attributes would

be selected using the training data. Going forward, the optimized cut heights would

be used during optimized combined clustering to cluster all new websites identified

using the top performing individual or combined input attribute matrices. Chrono-

logically splitting the training and test data in this manner is consistent with how we

expect operators fighting cybercrime to use the method.

We computed an adjusted Rand index [130] to evaluate the combined clustering

method described in Section 6.3 against the constructed ground-truth datasets us-

ing an optimized cut height which was determined from the training datasets. The

optimized cut height was identified by empirically testing cut height values between

0.01 and 0.99 in increments of 0.01 against the training data. Figure 6.3 illustrates

the Rand index values by input attribute at each of these intervals. The optimized

Rand index value selected is indicated by the dotted line on each input attribute’s

chart. Finally, the cut heights selected during the training phase are used to perform

optimized combined clustering against the testing data to assess how this technique

might perform in the real world setting previously described above. We also evaluated

139

employing the unsupervised dynamic tree cut using the method described in [88] to

determine an appropriate cut height along with other consensus clustering methods

for comparison. Rand index scores range from 0 to 1, where a score of 1 indicates a

perfect match between distinct clusterings.

Table 6.1a shows the adjusted Rand index for both datasets and all combinations

of input attributes using the dynamic and optimized cut height combined clustering

methods. The first four rows show the Rand index for each individual clustering.

For instance, for fake-escrow services, clustering based on HTML tags alone using

a dynamically determined cut height yielded a Rand index of 0.678 for the training

population. Thus, clustering based on tags alone is much more accurate than by

website sentences, file structure, or image similarity alone (Rand indices of 0.107,

0.094, and 0.068 respectively). When combining these input attributes, however, we

see further improvement. Clustering based on taking the minimum distance between

websites according to HTML tags and sentences yield a Rand index of 0.942, while

taking the minimum of all input attributes yields an adjusted Rand index of 0.941.

Both combined scores far exceed the Rand indices for any of the other individual

input attributes using a dynamically determined cut height.

Results on the test population, for fake-escrow services, show that using the dy-

namic cut height method may not always produce consistent performance results.

While the combined matrices achieve the highest Rand index during training, indi-

vidual HTML tags outperformed all other input attributes by a large margin at 0.648

in the test population.

The optimized cut height algorithm, however, consistently demonstrates a more

stable performance selecting the individual sentences matrix and the combined sen-

tences and HTML tags matrix as the top performers in both the training and test

populations.

140

Because cybercriminals act differently when creating logical copies of website for

different types of scams, the input attributes that are most similar can change. For

example, for HYIPs, we can see that clustering by website sentences yields the most

accurate individual Rand index, instead of HTML tags as is the case for fake-escrow

services. We can also see that for some scams, combining input attributes does not

yield a more accurate clustering. Clustering based on the minimum distance of all four

attributes yields a Rand index of 0.405 on the optimized cut height’s test population,

far worse than clustering based on website sentences alone. This underscores the

importance of evaluating the individual distance scores against the combined scores,

since in some circumstances an individual input attribute or a combination of a subset

of the attributes may fare better.

However, it is important to point out that the optimized cut height algorithm

appears to more consistently select top performing input matrices and higher Rand

index scores on all of the data we benchmarked against. Rand index scores dropped in

both the fake-escrow services and HYIP test datasets using a dynamically determined

cut height (0.294 and 0.63 respectively). When using optimized combined clustering,

however, this decrease was smaller in the fake-escrow services test population at

0.057 while test results for the HYIP data actually improved from 0.738 to 0.867 for

an increase of 0.129 or 12.9%.

We used several general-purpose consensus clustering methods from R’s Clue pack-

age [69] as benchmarks against the our “best min optimized cut-height” approach:

1. “SE” - Implements “a fixed-point algorithm for obtaining soft least squares

Euclidean consensus partitions ” by minimizing using Euclidean dissimilar-

ity [43,69].

2. “DWH” - Uses an extension of the greedy algorithm to implement soft least

squares Euclidean consensus partitions [43,69].

141

3. “GV3” - Utilizes an SUMT algorithm which is equivalent to finding the mem-

bership matrix m for which the sum of the squared differences between C(m) =

mm′ and the weighted average co-membership matrix
∑

b wbC(mb) of the par-

titions is minimal [64,69].

4. “soft/symdiff” - Given a maximal number of classes, uses an SUMT approach

to minimize using Manhattan dissimilarity of the co-membership matrices coin-

ciding with symdiff partition dissimilarity in the case of hard partitions [57,69].

Table 6.1b summarizes the best-performing measures for the different combined

and consensus clustering approaches. We can see that our “best min optimized cut-

height” approach performs best. It yields more accurate results than other general-

purpose consensus clustering methods, as well as the custom clustering method used

to group spam-advertised websites by the authors of [95].

6.5. Examining the Clustered Criminal Websites

We now apply the dynamic cut-height clustering methods presented earlier to the

entire fake-escrow (considering sentences, DOM tags and file structure) and HYIP

datasets (considering sentences alone). The 4 191 HYIP websites formed 864 clusters

of at least size two, plus an additional 530 singletons. The 1 216 fake-escrow websites

observed between January and June 2013 formed 161 clusters of at least size two,

plus seven singletons.

6.5.1. Evaluating Cluster Size

We first study the distribution of cluster size in the two datasets. Figure 6.4a plots

a CDF of the cluster size (note the logarithmic scale on the x-axis). We can see from

the blue dashed line that the HYIPs tend to have smaller clusters. In addition to

the 530 singletons (40% of the total clusters), 662 clusters (47% of the total) include

142

between 2 and 5 websites. 175 clusters (13%) are sized between 6 and 10 websites,

with 27 clusters including more than 10 websites. The biggest cluster included 20

HYIP websites. These results indicate that duplication in HYIPs, while frequent,

does not occur on the same scale as many other forms of cybercrime.

There is more overt copying in the escrow-fraud dataset. Only 7 of the 1 216

escrow websites could not be clustered with another website. 80 clusters (28% of the

total) include between 2 and 5 websites, but another 79 clusters are sized between 6

and 20. Furthermore, two large clusters (including 113 and 109 websites respectively)

can be found. We conclude that duplication is used more often as a criminal tactic

in the fake-escrow websites than for the HYIPs.

Another way to look at the distribution of cluster sizes is to examine the rank-

order plot in Figure 6.4b. Again, we can observe differences in the structure of the

two datasets. Rank-order plots sort the clusters by size and show the percentage of

websites that are covered by the smallest number of clusters. For instance, we can see

from the red solid line the effect of the two large clusters in the escrow-fraud dataset.

These two clusters account for nearly 20% of the total escrow-fraud websites. After

that, the next-biggest clusters make a much smaller contribution in identifying more

websites. Nonetheless, the incremental contributions of the HYIP clusters (shown in

the dashed blue line) are also quite small. This relative dispersion of clusters differs

from the concentration found in other cybercrime datasets where there is large-scale

replication of content.

6.5.2. Evaluating Cluster Persistence

We now study how frequently the replicated criminal websites are re-used over

time. One strategy available to criminals is to create multiple copies of the website

in parallel, thereby reaching more victims more quickly. The alternative is to re-use

copies in a serial fashion, introducing new copies only after time has passed or the

143

prior instances have collapsed. We investigate both datasets to empirically answer

the question of which strategy is preferred.

Figure 6.5 groups the 10 largest clusters from the fake-escrow dataset and plots

the date at which each website in the cluster first appears. We can see that for the

two largest clusters there are spikes where multiple website copies are spawned on

the same day. For the smaller clusters, however, we see that websites are introduced

sequentially. Moreover, for all of the biggest clusters, new copies are introduced

throughout the observation period. From this we can conclude that criminals are

likely to use the same template repeatedly until stopped.

Next, we examine the observed persistence of the clusters. We define the “lifetime”

of a cluster as the difference in days between the first and last appearance of a website

in the cluster. For instance, the first-reported website in one cluster of 18 fake-escrow

websites appeared on February 2, 2013, while the last occurred on May 7, 2013.

Hence, the lifetime of the cluster is 92 days. Longer-lived clusters indicate that

cybercriminals can create website copies for long periods of time with impunity.

We use a survival probability plot to examine the distribution of cluster lifetimes.

A survival function S(t) measures the probability that a cluster’s lifetime is greater

than time t. Survival analysis takes into account “censored” data points, i.e., when

the final website in the cluster is reported near the end of the study. We deem any

cluster with a website reported within 14 days of the end of data collection to be

censored. We use the Kaplan-Meier estimator [83] to calculate a survival function.

Figure 6.6 gives the survival plots for both datasets (solid lines indicate the survival

probability, while dashed lines indicate 95% confidence intervals). In the left graph,

we can see that around 75% of fake-escrow clusters persist for at least 60 days, and

that the median lifetime is 90 days. Note that around 25% of clusters remained active

at the end of the 150-day measurement period, so we cannot reason about how long

144

these most-persistent clusters will remain.

Because we tracked HYIPs for a much longer period (Figure 6.6 (right)), nearly all

clusters eventually ceased to be replicated. Consequently, the survival probability for

even long-lived clusters can be evaluated. 20% of HYIP clusters persist for more than

500 days, while 25% do not last longer than 100 days. The median lifetime of HYIP

clusters is around 250 days. The relatively long persistence of many HYIP clusters

should give law enforcement some encouragement: because the criminals reuse content

over long periods, tracking them down becomes a more realistic proposition.

6.6. Related Work

A number of researchers have applied machine learning methods to cluster web-

sites created by cybercriminals. Wardman et al. examined the file structure and

content of suspected phishing webpages to automatically classify reported URLs as

phishing [152]. Layton et al. cluster phishing webpages together using a combination

of k-means and agglomerative clustering [89].

Several researchers have classified and clustered web spam pages. Urvoy et al. use

HTML structure to classify web pages, and they develop a clustering method using

locality-sensitive hashing to cluster similar spam pages together [144]. Lin uses HTML

tag multisets to classify cloaked webpages [99]. Lin’s technique is used by Wang et

al. [149] to detect when the cached HTML is very different from what is presented to

user. Finally, Anderson et al. use image shingling to cluster screenshots of websites

advertised in email spam [13]. Similarly, Levchenko et al. use a custom clustering

heuristic method to group similar spam-advertised web pages [95]. We implemented

and evaluated this clustering method on the cybercrime datasets in Section 6.4. Der

et al. clustered storefronts selling counterfeit goods by the affiliate structure driving

traffic to different stores [41]. Finally, Leontiadis et al. group similar unlicensed

145

online pharmacy inventories [91]. They did not attempt to evaluate against ground

truth; instead they used Jaccard distance and agglomerative clustering to find suitable

clusters.

Neisius and Clayton also studied high-yield investment programs [117]. Notably,

they estimated that a majority of HYIP websites used templates licensed from a

company called “Goldcoders”. While we did observe some Goldcoder templates in our

own datasets, we did not find them occurring at the same frequency. Furthermore,

our clustering method tended to link HYIP websites more by the rendered text on

the page rather than the website file structure.

Separate to the work on cybercriminal datasets, other researchers have proposed

consensus clustering methods for different applications. DISTATIS is an adaptation

of the STATIS methodology specifically used for the purposes of integrating distance

matrices for different input attributes [5]. DISTATIS can be considered a three-way

extension of metric multidimensional scaling [87], which transforms a collection of

distance matrices into cross-product matrices used in the cross-product approach to

STATIS. Consensus can be performed between two or more distance matrices by

using DISTATIS and then converting the cross-product matrix output into into a

(squared) Euclidean distance matrix which is the inverse transformation of metric

multidimensional scaling [3].

Our work follows in the line of both of the above research thrusts. It differs in

that it considers multiple attributes that an attacker may change (site content, HTML

structure and file structure), even when she may not modify all attributes. It is also

tolerant of greater changes by the cybercriminal than previous approaches. At the

same time, though, it is more specific than general consensus clustering methods,

which enables the method to achieve higher accuracy in cluster labelings.

146

6.7. Concluding Remarks

When designing scams, cybercriminals face trade-offs between scale and victim

susceptibility, and between scale and evasiveness from law enforcement. Large-scale

scams cast a wider net, but this comes at the expense of lower victim yield and faster

defender response. Highly targeted attacks are much more likely to work, but they are

more expensive to craft. Some frauds lie in the middle, where the criminals replicate

scams but not without taking care to give the appearance that each attack is distinct.

In this paper, we propose and evaluate a combined clustering method to auto-

matically link together such semi-automated scams. We have shown it to be more

accurate than general-purpose consensus clustering approaches, as well as approaches

designed for large-scale scams such as phishing that use more extensive copying of

content. In particular, we applied the method to two classes of scams: HYIPs and

fake-escrow websites.

The method could prove valuable to law enforcement, as it helps tackle cyber-

crimes that individually are too minor to investigate but collectively may cross a

threshold of significance. For instance, our method identifies two distinct clusters

of more than 100 fake escrow websites each. Furthermore, our method could sub-

stantially reduce the workload for investigators as they prioritize which criminals to

investigate.

147

Fake-Escrow

Services

High-Yield

Investment

Programs

Figure 6.3: Rand index values for each input attribute at various cut heights.

148

1 2 5 10 20 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of cluster sizes

cluster size

F
ra

ct
io

n
of

 c
lu

st
er

s
<

=
 x

Escrow Fraud
HYIP

(a) Cumulative distribution function of
cluster size.

0 20 40 60 80 100

0
20

40
60

80
10

0

Rank−order plot of clusters

Cumulative % of clusters

C
um

ul
at

iv
e

%
 o

f w
eb

si
te

s

Escrow Fraud
HYIP

(b) Rank order plot of cluster sizes.

Figure 6.4: Evaluating the distribution of cluster size in the escrow fraud and HYIP
datasets.

1
2

3
4

5
6

7
8

9
10

Date website reported

C
lu

st
er

 (
so

rt
ed

 b
y

si
ze

)

● ● ● ●
●
●

●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

● ●
●

●
●
●

●
●

● ●●
●
●
●
●
●

●
●
●
●

● ● ●●
●
●
●
●
●

●●
●
●
●

●
●
●
●
●
●

●● ● ●
●

●●
●
●

●
●

●
●
●
●
●
●

●
●
●

●
●
●

● ● ●
●

●
●
●
●

●
●
●

● ●
●
●

●●● ● ●●
●
●

●
●
●

● ●
●

● ● ● ●
●
●
●
●

●●
●

●
●
●
●
●
●
●

● ●
●
●

●
●
●

●
●
●
●
●

●
●
●

● ●●● ●
●
●
●
●

●
●

●
●
●

●
●
●

●
●
●

● ●
●
●
●
●

●
●

●
●
●
●
●

●●
●

● ●●● ●
●
●
●
●
●
●

●
●
●

●● ●
●

●
●

●●●
●
●
●

●
●

●●
●

● ●
●
●

●
●

●●● ● ●
●

● ● ● ● ●●
●

● ●
●

●
●

● ●

● ● ●● ● ●● ● ● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ●
●

● ● ● ●
●

● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ●
●

● ● ●

● ● ● ●
●

● ●
●

● ●
●
●
●
●
●

● ● ● ●
●

● ● ●● ● ●● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ●
●

● ● ●
●

Figure 6.5: Top 10 largest clusters in the fake-escrow dataset by date the websites
are identified.

149

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fake−Escrow Cluster Persistence

Days between first and last appearance in cluster

S
ur

vi
va

l p
ro

ba
bi

lit
y

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HYIP Cluster Persistence

Days between first and last appearance in cluster

S
ur

vi
va

l p
ro

ba
bi

lit
y

Figure 6.6: Survival probability of fake-escrow clusters (left) and HYIP clusters
(right).

150

Chapter 7

DETECTION OF WEBSITES SELLING COUNTERFEIT GOODS

7.1. Introduction

The economist George Akerlof won a Nobel Prize for his work describing markets

with asymmetric information [9]. In such a market for “lemons”, consumers cannot

reliably distinguish between high- and low-quality goods. This inability triggers a

crucial market failure, whereby prices are driven down and low-quality goods domi-

nate.

More recently, Anderson argued that the market for secure software is also a

lemons market, as buyers cannot reliably observe whether or not the software they are

buying is in fact secure [14]. Researchers working in security economics now recognize

that information asymmetry is one of the fundamental barriers facing cybersecurity

today [15].

In this chapter, we study a related market for lemons: the online sale of cloth-

ing and luxury goods. Miscreants selling knockoff versions of popular goods have

proliferated online in recent years. Frequently, counterfeit-goods shops are manip-

ulating search engines to get high placement in search results for legitimate terms,

thereby duping consumers into thinking they can get a good deal on the real thing.

If search engines cannot distinguish legitimate sellers from those selling counterfeits,

why would we expect untrained people to be capable of doing so?

The online sale of knockoffs matters, and not just for those brands whose goods

are impersonated. Bad experiences with e-commerce carry large indirect costs, in that

151

they can turn people off from online participation and erode trust in the Internet [132].

Consequently, in this paper we set out to investigate the prevalence of counterfeit

goods online. We make the following contributions.

• We build an accurate classifier using features automatically extracted from web-

site content that distinguishes legitimate from fake sellers based upon data re-

turned by search results (Section 7.2).

• We apply the trained classifier and find that 5 407 websites are selling counter-

feits, out of a total of 18 756 websites. Overall, 32% of search results point to

fakes, and 79% of queries issued included at least one fake in the first page of

results.

• We show that while search engines do refer customers to counterfeit sellers when

the search terms ask for it, they also refer customers to counterfeit sellers in

large numbers even when they give no indication that they want fakes.

• We present a linear regression that demonstrates that the higher the selling

price is for fakes for a given brand, the more search results point to fakes. The

regression also demonstrates that active enforcement (as measured by DMCA

takedowns) can reduce the prevalence of fakes in search results by 9 %-pts.

• We show that the prevalence of fakes among brands is relatively stable over

time, and furthermore that some sellers respond to their website dropping out

of search results by adding copies registered at different URLs.

7.2. Classifying Websites Selling Counterfeits

We first describe the features used in building the classifier in Section 5.2.4 and

then outline the methods used in Section 7.2.1.

152

GLM SVM ADA
% # % # %

TP 175 29.1% 180 29.9% 125 20.8%
TN 337 66.0% 340 56.5% 318 52.8%
FP 31 5.1% 28 4.7% 50 8.3%
FN 59 9.8% 54 9.0 % 109 18.1%

Accuracy 85.0% 86.4% 73.6%
Precision 85.0% 86.5% 71.4%
Recall 74.8% 76.9% 54.4%

Table 7.1: Truth tables and accuracy measures for each classifier using 10-fold cross-
validation.

7.2.1. Building and evaluating the classifiers

Counterfeit websites were classified using Logistic Regression, Adaptive Boosting,

and Support Vector Machine models. Each of the machine learning models were

trained against our specialized features developed to identify counterfeit goods web-

sites. Finally, the models were validated against a manually constructed ground truth

dataset to assess each model’s detailed classification accuracy characteristics.

We implemented the three models using the R programming language. Three

of these packages include Support Vector Machines (SVM) [107], Generalized Linear

Models (GLM) [133], and Adaptive Boosting (AdaBoost) [36]. While all three pack-

ages can be highly accurate for various types of classification problems, each package

performs very differently when modeling (i.e. learning) different volumes of input

data [51].

Ground Truth Identification One of the fundamental challenges to classifying

logical copies of counterfeit goods websites is the lack of ground-truth data available

for evaluating the accuracy of automated feature selection and classification methods.

153

Some researchers have relied on expert judgment to assess similarity, (e.g., [91]) but

most forego any systematic evaluation due to a lack of ground truth. We now describe

a method for constructing ground truth datasets for samples of counterfeit goods

websites.

In order to classify stores, 602 unique screenshot/HTML pairs were pulled at

random from the data collected for manual inspection. The screenshots were then

examined to determine whether the store appeared to be selling fakes – a task which

is easier, and much slower, to do by hand. We relied on the judgment of a human

reviewer who had viewed many manually curated examples of legitimate and coun-

terfeit websites. Of the 602 stores sampled, 234 were determined to be counterfeit

and 368 were determined to not be counterfeit.

Results We independently trained and evaluated logistic regression (GLM), Support

Vector Machine (SVM) and, adaptive boosting (ADA) models using 10-fold cross-

validation. Table 7.1 shows the detailed truth tables for each model, along with

figures for accuracy, precision and recall. Logistic regression and SVM produced

more accurate results than adaptive boosting.

To get a sense of the relative importance of different features in the classifier,

we can examine the coefficients and odds ratios from the best-fit logistic regression

trained on the ground-truth data. Table 7.2 presents the results, with terms that are

statistically significant in the model highlighted in bold. As expected, the presence of

a large IFrame loading an external website is highly associated with the website selling

counterfeits. In fact, websites exhibiting this behavior face 204-times greater odds

that they are selling counterfeits! Newly registered domains, using the term ‘replica’

in the FQDN, and appearing on a takedown page are all associated with selling fakes.

The more currencies available on a website, the greater the advertised savings and

the longer the FQDN, the more likely the website is to be fake. Surprisingly, however,

154

Feature Coef. Odds ratio p-value

Page Contains Webmail Address 0.697 2.007 0.1722
Unique Brand Term Count 0.167 1.182 < 0.0001
Currencies Seen 0.240 1.272 0.0017
Large IFrames 5.320 204.3 < 0.0001
Private or China WHOIS 0.285 1.330 0.384021
Replica in FQDN 1.442 4.227 0.0002
WHOIS Registration < 1 Year 1.505 4.504 0.0001
Percent Savings Average 0.044 1.045 < 0.0001
Times Duplicate Price Seen 0.005 1.005 0.4471
Top-Level Page Mentions Brand -0.701 0.496 0.0097
Website on Takedown Page 2.892 18.05 0.0005
Length of FQDN 0.044 1.045 0.0782
Website in Alexa Top 100K -2.626 0.072 < 0.0001

Table 7.2: Coefficients and odds ratios for the logistic regression classifier (terms in
bold are statistically significant).

a private or Chinese WHOIS registration address was not found to be statistically

significant. Finally, two features are negatively associated with selling fakes – websites

with a top 100,000 Alexa ranking and those whose top-level index page also mention

the brand are less likely to sell fakes. The latter reflects the fact that the website is

more likely to be an actual merchant and not a compromised host.

7.2.2. The Blended Model Approach

We created a high recall blended model using 8 bootstraps each for the Adaptive

Boosting, Support Vector Machines, and linear regression libraries. The 8 bootstrap

training samples were created by taking 8 random samples of 20% with replacement

from the 80% population of data reserved for training. Eight models were created for

each individual machine learning library using these bootstraps.

Predictions were made using our reserved test data against all bootstrap models.

Next, resulting probabilities for each prediction were ranked to identify predictions

with the highest probability of belonging to the counterfeit goods class. By summing

155

all 8 rankings for each modeling library, an independent bootstrap consensus could

then be determined for the Adaptive Boosting, Support Vector Machines, and Linear

Regression libraries.

We calculated the accuracy of each independent consensus at various cut-points

to determine which blended model had the highest accuracy. For instance, accuracy

for each blended model was calculated on the first 150, 200, 250, 500, 1000, and

1500 predictions. Since all predictions are sorted by the probability of belonging

to the counterfeit goods class, population accuracy increases when looking at only

the top N predictions. Using this information, all of the blended Adaptive Boosting

predictions belonging to the counterfeit goods class were chosen as a starting base for

the blended model. Next, the top 200 and the top 100 predictions with the greatest

probability of belonging to the counterfeit goods class were selected from SVM and

GLM respectively. Any missing predictions from either of these populations were

added to the blended result.

While this approach is slightly less accurate overall when compared to Adaptive

Boosting (e.g. 97.8% vs. 96.3%), the blended model produces much higher recall at

100% never predicting incorrectly that a counterfeit goods website does not belong to

the counterfeit goods class. Adaptive Boosting is able identify more total counterfeit

goods class members at 512 vs. 472 for the blended approach. However, the blended

approach is more effective at identifying when a website should not be associated with

the counterfeit goods class.

7.2.3. Counterfeit Goods Classification Feature Importance

The Adaptive Boosting package for R includes a variable importance plot which

can be used to determine the features which were considered most important during

the model’s training. These features provide a sense of variable importance using

the frequency at which each feature was selected for boosting during the training

156

process. [36] Figure 7.1 shows a pairwise plot of each feature and the importance

score assigned by the Adaptive Boosting model when training against the 80% ran-

domly sampled training data set. This model shows both the page level features and

search term specific features working together to provide the optimal prediction re-

sults produced by the Adaptive Boosting model. Page level features such as privately

registered webpages, webpages originating from China, and the webpage’s registra-

tion country appear to highly influence prediction of counterfeit websites. In addition,

search term specific features such as unique brand counts greater than 15, and specific

individual brands such as Panerai, Louis Vuitton, Bvlgari, Fendi, and Burberry make

appearances as top predictors on the Model’s important variables list.

157

Figure 7.1: Important Features Selected By Adaptive Boosting During Model Train-
ing

158

Figure 7.2: Important Features Selected By Adaptive Boosting During Model Train-
ing (Bootstraps 1-4)

159

Figure 7.3: Important Features Selected By Adaptive Boosting During Model Train-
ing (Bootstraps 5-8)

While the important variables listed above are highly informative, still greater

insights can be gained by looking further at the eight random bootstrap sample models

created for Adaptive Boosting during the blended model creation process. In practice,

looking at the average performance for variable importance has proven to be highly

informative producing a better representation of each variables overall contribution

160

to Adaptive Boosting model predictions. [36] Figures 7.2 and 7.3 illustrates one

variable importance plot for each of the eight random bootstrap samples of 20% with

replacement taken from the 80% training data population.

These plots reveal that the webpage’s WHOIS registration country is consistently

chosen as a “top 4” feature in 6 out of 8 models. It is also chosen as a “top 10” feature

in 7 out of the 8 models. In addition, The number of currencies seen on a webpage is

chosen as a “top 10” feature in 7 out of the 8 models as well. Webpages offering more

than 10 or 15 unique search term specific brands also appears to strongly influence

accurate predictions in most models. Furthermore, specific individual brands such as

Hublot, IWC, Louis Vuitton, Chanel, and Panerai are consistently identified by each

model as top predictors of counterfeit goods websites.

7.3. Related Work

In very recent work carried out concurrently to our own efforts, Wang et al. use

clustering techniques to identify “campaigns” of similar websites advertising coun-

terfeit goods [148], using methods described in [42]. They also issue search queries

for brands, but they identify websites selling knockoffs by looking for signs that the

hosting website has been hacked and is demonstrating cloaking behavior. Their anal-

ysis in turn focuses on linking together disparate websites into groupings. Our work

complements theirs in that we focus on the more general problem of classifying all

search results as selling knockoffs or not. Cloaking behavior is indicative of many, but

certainly not all, of today’s websites selling counterfeits. One way we can see this is

to note that 45% of the websites we identified as selling counterfeits also mentioned

the brand on their homepage. This suggests that many of these websites are not

hacked, but instead are brazenly selling fakes. Furthermore, we focus our analysis on

examining differences in the prevalence of counterfeits in web search by user intent

161

and brand characteristics.

More broadly, a number of papers have investigated abuse in search-engine results.

Provos et al. presented a mechanism for identifying drive-by-downloads in web search

results [127]. Moore et al. [115] and John et al. [77] report on the poisoning of trend-

ing search terms to distribute malware and host ad-laden, auto-generated content.

Leontiadis et al. document search-poisoning by those peddling counterfeit pharma-

ceuticals [90]. The same authors recently reported on a longitudinal study of such

search-engine poisoning promoting unlicensed pharmacies [92]. Notably, they com-

pared the prevalence of search poisoning based upon the intent of the search queries,

finding that both innocent and complicit queries turn up unlicensed pharmacies. This

complements our own findings regarding the presence of knockoffs in search results,

regardless of query intent.

A number of papers have proposed classifiers to identify malicious web content.

Abu Nimeh et al. compare several methods for classifying phishing websites [7].

Many others have constructed features for classifying malicious web pages based upon

website content or behavior [18,27,118,147,153]. Our paper continues in this tradition,

but builds a classifier based upon features specific to websites selling knockoffs (e.g.,

selling in multiple currencies, pricing information).

7.4. Conclusion

The web has revolutionized commerce, giving consumers access to more choice

at lower prices. Unfortunately, it can be hard to determine whether the great deal

found online is truly a bargain or is actually cheap because the merchant is selling

knockoffs. In this paper, we have conducted a large-scale empirical analysis of 25

counterfeit goods found through web search. We designed a purpose-built classifier to

predict whether a given website found through search likely sells genuine merchandise

162

or counterfeit goods.

We have found that 32% of inspected search results point to fakes overall, but

we have also observed wide variation. Innocent queries such as “hublot buy online”

are less likely to lead to fakes, but introducing the word “cheap” can lead to nearly

40% of the results pointing to stores selling counterfeits. Furthermore, some brands

are targeted more often than others. Brands who sell high-end goods such as luxury

watches tend to have their search results polluted with more knockoffs. Not all the

news is bad for brands, however. We have presented a linear regression that indicates

those who actively protect their brand (which we observe by a record of DMCA

enforcement) experience much lower rates of fakes in search.

By and large, merchants selling fakes take advantage of reliable web hosting by

operating in countries with strong infrastructure. They also tend to replace removed

websites with copied content on new URLs.

In future work, we hope to continue measuring progress in combating the sale

of counterfeit goods by carrying out longitudinal studies. More work can be done to

improve the classifier’s accuracy so that it can be used in an ongoing basis by operators

in the field. We also hope to investigate similarities between websites selling fakes in

greater depth.

163

Chapter 8

APPLYING STRAND TO MALWARE CLASSIFICATION

This chapter utilizes both the bioinformatics features developed in Chapter 3 and

the Strand gene sequence classification software described in Chapter 4 to successfully

train and classify 9 different types of malware files introduced in the Kaggle Microsoft

Malware Classification Challenge (BIG 2015) [79]. I tie together the domains of cy-

bercrime and bioinformatics building upon both the cybercrime feature extraction

and detection techniques described in Chapters 5, 6, and 7. The Collaborative An-

alytics Framework introduced in Chapter 2 facilitates strategic and efficient changes

within the Strand application to support processing the content within any number

of malware input files as if they contained gene sequence data.

The Kaggle challenge simulates the file input data processed by Microsoft’s real-

time detection anti-malware products which are installed on over 160M computers

and inspect over 700M computers each month [79]. Similar to the mutations found in

gene sequences, criminals producing malware introduce polymorphism [79] into the

programs which they create. Miscreants avoid malware detection in this manner by

basically designing mutated or differing copies of the same program which still share

the same functional characteristics. The goal of the Microsoft Malware Classification

Challenge is to group these malware at a high level into 9 different classes of malicious

programs.

164

8.1. The Training and Classification Input Data

Microsoft provided almost a half terabyte of training and classification input data

which included:

1. Bytes Files: 10,868 training and 10,873 test .bytes files containing the raw hex-

adecimal representation of the file’s binary content with the executable headers

removed.

2. Asm Files: 10,868 training and 10,873 test .asm files containing a metadata

manifest including data extracted by the IDA disassembler tool. This informa-

tion includes things such as function calls, strings, assembly command sequences

and more.

3. Training Labels: Each training and test file name is a MD5 hash of the actual

program. The training labels file contains each MD5 hash and the malware class

which it maps to. No training labels were provided for the test data input files.

4. Sample Submission: The sample submission file illustrates the valid submis-

sion format for 10,873 sample records.

5. Data Sample: The data sample file includes a preview of the test and training

data.

8.2. Challenge Evaluation, Competitors, and Results

Kaggle challenge participants were evaluated using a multi-class logarithmic loss

score. Each test file submission made required not only the predicted malware class,

but the estimated probabilities for the file belonging to each of the 9 classes. Each

submission record included the file hash and 9 additional comma-delimited fields each

containing a value for the predicted probability that a given file belongs a particular

class.

165

There were 377 international teams competing in the contest with $16,000 in

available prize money. The winning team achieved a log loss ratio score of 0.002833228

where a value of zero represents a perfect score. The winning model produced an

accuracy level greater than 99% during 10-fold cross-validation [80].

The winning team’s model ensemble was highly complex using a combination

of features including: byte 4 gram instruction counts, function names and derived

assembly features, assembly op-code n-grams, asm file segment counts, and asm file

pixel intensity [150]. Generating these features required 500GB of disk space for the

original training data and an additional 200GB for engineered features [150]. While

the final features used for the model required only 4GB, both feature engineering and

generating the top performing model takes around 48 hours [150]. Furthermore, it

takes an additional 24 hours to generate the best model ensemble which produced

the winning score [150]. In short, the winning submission takes 72 hours to produce.

8.3. Applying Strand to Microsoft Malware Classification Challenge

I was able to created highly efficient and accurate classification results by utiliz-

ing the Strand application to train and generate predictions against the Microsoft

Malware Data. While Strand was originally designed to process .fasta or .fna format-

ted gene sequence files, the Collaborative Analytics Framework accommodated for

relatively minor modifications to read and process the malware files as input.

One benefit of Strand is that unlike many other sequence classifiers and k-mer

counters [103,121,157], Strand uses no special encoding of sequence data. As a result,

any characters supported by the Unicode character set can be treated as sequence

data within Strand.

During gene sequence classification, the SNIP’s of sequence data commonly pro-

vided by modern sequencers can be in either forward or reverse-complement order.

166

00401000 56 8D 44 24 08 50 8B F1 E8 1C 1B 00 00 C7 06 08
00401010 BB 42 00 8B C6 5E C2 04 00 CC CC CC CC CC CC CC
00401020 C7 01 08 BB 42 00 E9 26 1C 00 00 CC CC CC CC CC
00401030 56 8B F1 C7 06 08 BB 42 00 E8 13 1C 00 00 F6 44
00401040 24 08 01 74 09 56 E8 6C 1E 00 00 83 C4 04 8B C6
00401050 5E C2 04 00 CC CC CC CC CC CC CC CC CC CC CC CC
00401060 8B 44 24 08 8A 08 8B 54 24 04 88 0A C3 CC CC CC
00401070 8B 44 24 04 8D 50 01 8A 08 40 84 C9 75 F9 2B C2
00401080 C3 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
00401090 8B 44 24 10 8B 4C 24 0C 8B 54 24 08 56 8B 74 24
004010A0 08 50 51 52 56 E8 18 1E 00 00 83 C4 10 8B C6 5E
004010B0 C3 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
0042A800 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Figure 8.1: Malware .bytes hex data file content.

As a result of this limitation, classification searches on sequence data must be made

using each input sequence’s forward and reverse-complement effectively doubling the

number of classification searches required. This particular feature of Strand is gene

sequence specific and was irrelevant for malware classification. After turning off the

reverse-complement search and modifying the sequence file parsing routine, Strand

was able train and classify against malware data with no other changes.

8.4. Developing Malware Features for Strand

All of the Malware feature engineering required to convert Malware program data

into Strand sequences, fits into just a few lines of code. First, no .asm files were used

to produce the score and accuracy results presented later in Table 8.1. The .asm files

were eliminated since I was unable produce a higher accuracy score when using them

in combination with the .bytes files. In the future, a two model ensemble could be

created which classifies each malware file in Strand based on combining the individual

scores from dual .bytes and .asm model predictions.

Figure 8.1 illustrates the typical content encountered within the .bytes hex data

files provided by Microsoft. The first 8 characters of each line contain a line number,

and the last line shows how some hex content is unavailable and displayed as “??”.

167

StringBuilder currSeqText = new StringBuilder();

foreach (var line in File.ReadLines(FnaFileMap.FilePath))
{

//Remove the carriage returns, line number, spaces, and ??
//values from each line of hex in the .bytes file.
currSeqText.Append(line.Substring(9).Replace(" ", string.Empty).Replace("?", string.Empty));

}

Figure 8.2: Strand C# code used to process malware .bytes hex data files.

Both the line numbers and “??” symbols are removed during Strand processing. The

“??” symbols were present in the files provided by Microsoft for the challenge.

When reading each .bytes file, Strand uses the code shown in Figure 8.2 to convert

the .bytes malware files into a Strand sequence. During processing each carriage

return, space, and “?” character are removed. This produces a single string or Strand

sequence containing all hex content read from the malware file. Once the malware

hex data is cleaned, sequence words or k-mers are generated by Strand exactly as

described in Chapters 3 and 4.

8.5. Malware Classification Results Using Strand

While Strand did not produce a winning log loss score for the Kaggle Microsoft

Malware Classification Challenge (BIG 2015) [79], I was able achieve a log loss score

of 0.452784 when using a 32-bit minhashing configuration with Strand. I used a word

length 10 characters and 2400 minhash values within the Strand minhash signature to

achieve this result. The primary benefit of using Strand was achieving an acceptable

degree of accuracy within a short period of time. Training and classification times

were both under 7 hours for processing 224GB of training data and 189GB of test

data.

168

5-Fold Cross-validation Results
Fold Classified Correct Accuracy Train Time Classify Time
Fold 1 1087 979 90.06% 06:46:31 00:30:38
Fold 2 1087 998 91.81% 06:25:38 00:30:26
Fold 3 1087 1011 93.01% 06:35:01 00:31:50
Fold 4 1087 995 91.54% 06:34:53 00:33:53
Fold 5 1087 1004 92.36% 06:21:12 00:28:12

Table 8.1: Five-fold cross-validation results when using Strand to predict 5 folds from
the Microsoft malware training data.

Table 8.1 shows five-fold cross-validation results for the first 5 folds of Malware

Classification Challenge training data. Strand averaged 91.76% accuracy across the

five folds predicted using only 32-bit hashing functions. When using 64-bit hashing

functions, I was able to drastically reduce the log loss score produced from 0.452784

to 0.222864. While memory consumption increased slightly, there was no real degra-

dation in training or classification performance.

The 64-bit training database takes up approximately 5GB in memory and 436MB

on disk while the 32-bit version takes up approximately 3GB in memory and 255MB

on disk. Due to the small size of the training database, multiple copies can be

loaded into memory for multiple worker processes to take advantage of process level

parallelism when classifying large volumes of data. For example, fifteen classification

workers were used to process the test files provided by Microsoft.

5-Fold Cross-validation Results
Fold Classified Correct Accuracy Train Time Classify Time
Fold 1 1087 1053 96.87% 06:42:54 00:33:22
Fold 2 1087 1054 96.96% 05:53:21 00:31:36
Fold 3 1087 1069 98.34% 06:50:26 00:34:12
Fold 4 1087 1052 96.78% 06:32:24 00:35:00
Fold 5 1087 1065 97.98% 06:50:25 00:32:50

Table 8.2: Five-fold cross-validation results when using Strand with 64-bit hash codes
to predict 5 folds from the Microsoft malware training data.

169

Table 8.2 shows five-fold cross-validation results for the version of Strand using

64-bit hash codes. Strand averaged 97.39% accuracy across the five folds. When using

64-bit hashing functions, I was able to drastically reduce the log loss score produced

from 0.452784 to 0.222864. While memory consumption increased slightly, there was

no large degradation in training or classification performance.

8.6. Conclusion

The Collaborative Analytics Framework in combination with Strand can be suc-

cessfully used to predict multiple classes of malware data. While Strand did not

produce a winning log loss score, we were able to achieve classification accuracy levels

well over 90% while making predictions in less than 10% of the training and classifica-

tion times required by the winning team. Strand’s support for all Unicode characters

makes it highly flexible and ideal for high performance machine learning applications

using input data formats other than just the training and classification of .fna and

.fasta formatted sequence data input files.

170

Chapter 9

CONCLUSION AND FUTURE WORK

9.1. Concluding Remarks

This thesis provides a wide variety of machine learning techniques related to big

data applications in Bioinformatics and Cybercrime. The Collaborative Analytics

Framework introduces a multicore MapReduce style processing pipeline, techniques,

and tools which create additional massively parallel methods for machine learning.

The framework is leveraged to solve multiple challenging research problems, ranging

from gene sequence classification to identifying websites selling counterfeit goods. I

have also presented parallel programming algorithms for feature space compression

using techniques such as minhashing, which is a form of locality sensitive hashing

applied to both supervised and unsupervised machine learning techniques. It is the

multiple scalable machine learning applications in the fields of bioinformatics and

cybercrime that forms the primary contribution of this thesis.

Chapter 2, applies highly parallel producer-consumer data processing pipelines

to very large volumes of input data creating a novel feature extraction framework.

While these techniques are similar to MapReduce style processing, they allow both the

‘map’ and ‘reduce’ stages access to the same shared memory for enhanced parallelism.

Parallel extraction of features from a variety of unstructured data sources such as gene

sequences, text, webpages, html, and images are discussed.

Chapter 3 expands upon the new framework introduced in Chapter 2 and presents

feature extraction techniques for gene sequence data. The Collaborative Analyt-

171

ics Framework successfully extracts gene sequence words from unstructured gene se-

quence data in a format which Edit Distance is approximated by using Jaccard simi-

larity when determining the similarities and differences between gene sequence data.

The framework’s highly parallel processing pipeline simultaneously identifies unique

gene sequence words, minhashes each word to generate minhash signatures, and in-

tersects minhash signatures to estimate Jaccard similarity for highly accurate and

efficient identification of gene sequence taxonomy feature classes. These techniques

are successfully used in Chapter 4 for rapid gene sequence classification and abundance

estimation processes. Chapter 4 demonstrates application of the Collaborative Ana-

lytics Framework to develop the gene sequence classification software STRAND - “the

Super-Threaded, Reference-Free, Alignment-Free, N-Sequence Decoder”. STRAND is

a machine learning platform for the identification and classification of gene sequence

data into any number of gene sequence taxonomy classes using these highly parallel

bioinformatics feature extraction techniques. I compare the accuracy and performance

characteristics of Strand against RDP using 16S rRNA sequence data from the RDP

training dataset and the Greengenes sequence repository. Strand produces compa-

rable accuracy during ten-fold cross-validation performing classifications almost 20

times faster than RDP. Finally, a version of Strand is applied to the challenge of

gene sequence abundance estimation. Very large volumes of gene sequence data from

the National Center for Biotechnology Information are used as training examples for

the classification of very short gene sequence reads or “snips” commonly produced

by modern gene sequencing platforms. Strand is a highly flexible and scalable gene

sequence classification program which can be implemented on multiple processors

and or machines to accommodate very large gene sequence training and classification

tasks.

172

In Chapter 5, I develop useful machine learning features for cybercrime. Website

HTML, displayed text and screen shots are used as data input. I present methods to

identify Ponzi and Escrow Fraud schemes as well as websites selling counterfeit goods.

URL-level features, webpage-level features, and website-level features are combined

into various machine learning models for the successful classification and clustering

algorithms. I demonstrate the creation of large scale distance matrices and combine

multiple distance matrices to identify and cluster together loose copies of replicated

criminal websites as well.

Chapter 6 demonstrates an unsupervised machine learning approach for the iden-

tification of replicated criminal Ponzi Scheme and Escrow Fraud websites. In this

research, I present a new technique called optimized combined clustering which links

together replicated scam websites, even when the criminal has taken steps to hide

connections. I explore topics such as feature extraction automation, including the ex-

traction of rendered text, HTML structure, file structure and screen shots. I evaluated

the method’s applicability to cybercrime by measuring its performance against two

collected datasets of scam websites: fake-escrow services and high-yield investment

programs (HYIPs). This method is more accurate than general purpose consensus

clustering approaches, as well as approaches designed for large-scale scams such as

phishing that use more extensive copying of content.

Chapter 7 presents a highly parallel implementation for the identification of crim-

inal websites. I identify and analyze websites selling counterfeit goods or knockoff

products. URL-level, page-level, and website-level features are used, as well as web-

page screenshots for identifying these criminal websites. A binary classifier predicts

whether a given website is selling counterfeits by examining the automatically ex-

tracted features. We find that between January and August 2014, 32% of search

results point to websites selling fakes overall.

173

9.2. Future Research Opportunities

In the future, I plan to apply both Strand and the Collaborative Analytics Frame-

work to problems outside the domain of Bioinformatics. Since Strand uses no special

encoding of text data, other unstructured input data sources should be evaluated. For

example, high level testing on 9 classes of common malware data showed promising

results with Strand predicting malware binaries at over 90% accuracy. This work

should be extended, and Strand should be formally tested now that optimal hash-

ing function sizes can be determined after reviewing both n-gram lengths and hash

function bit sizes.

Two additional areas of Strand related research also appear highly favorable. First,

the very simplistic parallelization pipelines developed for Strand appear highly com-

patible for optimization on a graphics card. The Chinese Search Engine company

Baidu recently broke the world record for image recognition in early 2015. What

was impressive about this accomplishment was that the “supercomputer” used for the

task included only 32 GPUs [158]. In fact, Baidu cites a study which claims "that

12 GPUs in a 3-machine cluster can rival the performance of the performance of

the 1,000-node CPU cluster behind the famous Google Brain project". [68]. GPU’s

may offer optimal performance for sequence classification unobtainable on a CPU. In

addition, the multiple hashing operations performed during minhashing operations

are favorable for GPU processing. Finally, embedded systems may offer great oppor-

tunity for the monetization of the Strand patent. Many opportunities for creating

embedded system classification “black boxes” come to mind.

174

REFERENCES

[1] Alexa top 1 million websites. http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip.

[2] Spark. https://spark.apache.org/; Accessed: 2015-02-25.

[3] Abdi, H. Encyclopedia of Measurement and Statistics. SAGE Publications,
Inc., 2007, pp. 598–605.

[4] Abdi, H., O’Toole, A., Valentin, D., and Edelman, B. Distatis: The
analysis of multiple distance matrices. In Computer Vision and Pattern Recogni-
tion - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference
on (June 2005), pp. 42–42.

[5] Abdi, H., Williams, L. J., Valentin, D., and Bennani-Dosse, M. Statis
and distatis: optimum multitable principal component analysis and three way
metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computa-
tional Statistics 4, 2 (2012), 124–167.

[6] Abramson, K. D., Butts Jr, H. B., and Orbits, D. A. Affinity scheduling
of processes on symmetric multiprocessing systems, Apr. 9 1996. US Patent
5,506,987.

[7] Abu-Nimeh, S., Nappa, D., Wang, X., and Nair, S. A comparison of
machine learning techniques for phishing detection. In Proceedings of the 2nd
APWG eCrime Researchers Summit (2007), ACM, pp. 60–69.

[8] Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Poly-
meropoulos, M. H., Xiao, H., Merril, C. R., Wu, A., Olde, B.,
Moreno, R. F., et al. Complementary dna sequencing: expressed sequence
tags and human genome project. Science 252, 5013 (1991), 1651–1656.

[9] Akerlof, G. A. The market for "lemons": Quality uncertainty and the market
mechanism. The Quarterly Journal of Economics 84, 3 (1970), pp. 488–500.

[10] Alpha, E. Discovering the webâĂŹs hidden alpha, 2014. http://www.
eaglealpha.com/whitepaper_pdf;Accessed:2014-12-08.

[11] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman,
D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 3
(1990), 403–410.

175

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://spark.apache.org/
http://www.eaglealpha.com/whitepaper_pdf; Accessed: 2014-12-08
http://www.eaglealpha.com/whitepaper_pdf; Accessed: 2014-12-08

[12] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman,
D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 3
(1990), 403–410.

[13] Anderson, D. S., Fleizach, C., Savage, S., and Voelker, G. M. Spam-
scatter: Characterizing Internet scam hosting infrastructure. In Proceedings of
16th USENIX Security Symposium (Berkeley, CA, USA, 2007), USENIX Asso-
ciation, pp. 10:1–10:14.

[14] Anderson, R. Why information security is hard - an economic perspective.
In Proceedings of the 17th Annual Computer Security Applications Conference
(ACSAC’01) (New Orleans, LA, Dec. 2001).

[15] Anderson, R., and Moore, T. The economics of information security.
Science 314, 5799 (Oct. 2006), 610–613.

[16] Apache. Hadoop, 2014. http://hadoop.apache.org/;AccessedOn:05/12/
2015.

[17] Applications, A. C# tutorials, 2015. http://savvash.blogspot.com/p/
c-tutorials.html;Accessed:2015-03-06.

[18] Bannur, S. N., Saul, L. K., and Savage, S. Judging a site by its content:
learning the textual, structural, and visual features of malicious web pages. In
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence
(2011), ACM, pp. 1–10.

[19] Berenguel, L. P., and Reykjalin, J. Nonvolatile ramdisk memory, Aug. 31
1993. US Patent 5,241,508.

[20] Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom,
E. A., Francois, F., Perez-Perez, G., Blaser, M. J., and Relman,
D. A. Molecular analysis of the bacterial microbiota in the human stomach.
Proceedings of the National Academy of Sciences of the United States of America
103, 3 (2006), 732–737.

[21] Blum, A., Wardman, B., Solorio, T., and Warner, G. Lexical feature
based phishing url detection using online learning. In Proceedings of the 3rd
ACM Workshop on Artificial Intelligence and Security (New York, NY, USA,
2010), AISec ’10, ACM, pp. 54–60.

[22] Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L.,
DâĂŹAmore, R., Allen, A. M., McKenzie, N., Kramer, M., Ker-
hornou, A., Bolser, D., et al. Analysis of the bread wheat genome using
whole-genome shotgun sequencing. Nature 491, 7426 (2012), 705–710.

176

http://hadoop.apache.org/; Accessed On: 05/12/2015
http://hadoop.apache.org/; Accessed On: 05/12/2015
http://savvash.blogspot.com/p/c-tutorials.html; Accessed: 2015-03-06
http://savvash.blogspot.com/p/c-tutorials.html; Accessed: 2015-03-06

[23] Broder, A. Z. On the resemblance and containment of documents. In Com-
pression and Complexity of Sequences 1997. Proceedings (1997), IEEE, pp. 21–
29.

[24] Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenmacher,
M. Min-wise independent permutations. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing (1998), ACM, pp. 327–336.

[25] Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. Syn-
tactic clustering of the web. Computer Networks and ISDN Systems 29, 8
(1997), 1157–1166.

[26] Buhler, J. Efficient large-scale sequence comparison by locality-sensitive hash-
ing. Bioinformatics 17, 5 (2001), 419–428.

[27] Canali, D., Cova, M., Vigna, G., and Kruegel, C. Prophiler: a fast
filter for the large-scale detection of malicious web pages. In Proceedings of the
20th international conference on World wide web (2011), ACM, pp. 197–206.

[28] Chandra, T. Sibyl: A system for large scale machine learning at google, 2014.
https://www.youtube.com/watch?v=QoUVwGZb9tA;Accessed:2014-12-08.

[29] Chiu, C.-Y., Wang, H.-M., and Chen, C.-S. Fast min-hashing indexing and
robust spatio-temporal matching for detecting video copies. ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMCCAP)
6, 2 (2010), 10.

[30] Chu, C., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., and
Olukotun, K. Map-reduce for machine learning on multicore. Advances in
neural information processing systems 19 (2007), 281.

[31] Chu, C. T., Kim, S. K., Lin, Y. A., Yu, Y., Bradski, G. R., Ng, A. Y.,
and Olukotun, K. Map-Reduce for Machine Learning on Multicore. In
NIPS (2006), B. Schölkopf, J. C. Platt, and T. Hoffman, Eds., MIT Press,
pp. 281–288.

[32] Chum, O., Perdoch, M., and Matas, J. Geometric min-hashing: Finding
a (thick) needle in a haystack. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on (2009), IEEE, pp. 17–24.

[33] Chum, O., Philbin, J., and Zisserman, A. Near duplicate image detection:
min-hash and tf-idf weighting. In BMVC (2008), vol. 810, pp. 812–815.

[34] Clayton, R. WHOIS data extracted from templates (deft-whois), 2014. http:
//www.deft-whois.com.

177

https://www.youtube.com/watch?v=QoUVwGZb9tA; Accessed: 2014-12-08
http://www.deft-whois.com
http://www.deft-whois.com

[35] Clayton, R., and Mansfield, T. A study of whois privacy and proxy service
abuse. In 13th Workshop on the Economics of Information Security (2014).

[36] Culp, M., Johnson, K., and Michailidis, G. ada: An r package for
stochastic boosting. Journal of Statistical Software 17, 2 (2006), 9.

[37] dartmouth. Pros and cons of openmp/mpi, 2011.

[38] de Souza, C. Near-duplicate image detection,
2014. http://www.codeproject.com/Articles/441226/
Haar-feature-Object-Detection-in-Csharp;Accessed:2015-03-06.

[39] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large
clusters. Communications of the ACM 51, 1 (2008), 107–113.

[40] Dean, J., and Ghemawat, S. Mapreduce: A flexible data processing tool.
Communications of the ACM 53, 1 (2010), 72–77.

[41] Der, M. F., Saul, L. K., Savage, S., and Voelker, G. M. Knock it off:
Profiling the online storefronts of counterfeit merchandise. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (2014), ACM.

[42] Der, M. F., Saul, L. K., Savage, S., and Voelker, G. M. Knock it off:
Profiling the online storefronts of counterfeit merchandise. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (New York, NY, USA, 2014), KDD ’14, ACM, pp. 1759–1768.

[43] Dimitriadou, E., Weingessel, A., and Hornik, K. A combination scheme
for fuzzy clustering. International Journal of Pattern Recognition and Artificial
Intelligence 16, 07 (2002), 901–912.

[44] Dingledine, R., Mathewson, N., and Syverson, P. Tor: The second-
generation onion router. In 13th USENIX Security Symposium (Aug. 2004).

[45] Documentation, R. Hierarchical clustering, 2015. https://stat.ethz.
ch/R-manual/R-patched/library/stats/html/hclust.html;Accessed:
2015-03-06.

[46] DOMO. Data never sleeps 2.0, 2013. http://www.domo.com/learn/
data-never-sleeps-2;Accessed:2014-12-08.

[47] dotnetperls. C# interlocked, 2015. http://www.dotnetperls.com/
interlocked;Accessed:2015-02-28.

[48] Drew, J. Mapreduce: Map reduction strategies using
C#, 2013. http://www.codeproject.com/Articles/524233/
MapReduceplus-fplusMapplusReductionplusStrategies;Accessed:
2014-04-26.

178

http://www.codeproject.com/Articles/441226/Haar-feature-Object-Detection-in-Csharp; Accessed: 2015-03-06
http://www.codeproject.com/Articles/441226/Haar-feature-Object-Detection-in-Csharp; Accessed: 2015-03-06
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html; Accessed: 2015-03-06
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html; Accessed: 2015-03-06
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html; Accessed: 2015-03-06
http://www.domo.com/learn/data-never-sleeps-2; Accessed: 2014-12-08
http://www.domo.com/learn/data-never-sleeps-2; Accessed: 2014-12-08
http://www.dotnetperls.com/interlocked; Accessed: 2015-02-28
http://www.dotnetperls.com/interlocked; Accessed: 2015-02-28
http://www.codeproject.com/Articles/524233/MapReduceplus-fplusMapplusReductionplusStrategies; Accessed: 2014-04-26
http://www.codeproject.com/Articles/524233/MapReduceplus-fplusMapplusReductionplusStrategies; Accessed: 2014-04-26
http://www.codeproject.com/Articles/524233/MapReduceplus-fplusMapplusReductionplusStrategies; Accessed: 2014-04-26

[49] Drew, J. Wordreducer - example map reduction process that counts unique
words in a body of text., 2013. http://www.jakemdrew.com/blog/mapreduce.
htm;Accessed:2015-02-28.

[50] Drew, J. Clustering similar images using mapreduce style feature ex-
traction with c# and r, 2014. http://blog.jakemdrew.com/2014/06/26/
clustering-similar-images-using-mapreduce-style-feature-extraction-with-c-and-r/
;Accessed:2015-03-06.

[51] Drew, J. Machine learning in parallel with support vector machines, general-
ized linear models, and adaptive boosting, 2014.

[52] Drew, J., and Hahsler, M. Strand: fast sequence comparison using mapre-
duce and locality sensitive hashing. In Proceedings of the 5th ACM Confer-
ence on Bioinformatics, Computational Biology, and Health Informatics (2014),
ACM, pp. 506–513.

[53] Duffy, J., and Essey, E. Running queries on multi-core proces-
sors, 2007. https://msdn.microsoft.com/en-us/magazine/cc163329.aspx;
Accessed:2015-02-26.

[54] Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlef-
sen, L., Sargent, M., Gill, S. R., Nelson, K. E., and Relman, D. A.
Diversity of the human intestinal microbial flora. science 308, 5728 (2005),
1635–1638.

[55] Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics (Oxford, England) 26, 19 (2010), 2460–1.

[56] Edgar, R. C. Search and clustering orders of magnitude faster than blast.
Bioinformatics 26, 19 (2010), 2460–2461.

[57] Fiacco, A. V., and McCormick, G. P. Nonlinear programming: sequential
unconstrained minimization techniques. No. 4. Siam, 1990.

[58] Florencio, D., and Herley, C. Evaluating a trial deployment of password
re-use for phishing prevention. In Second APWG eCrime Researchers Summit
(New York, NY, USA, 2007), eCrime ’07, ACM, pp. 26–36.

[59] Gao, Z., Tseng, C.-h., Pei, Z., and Blaser, M. J. Molecular analysis
of human forearm superficial skin bacterial biota. Proceedings of the National
Academy of Sciences 104, 8 (2007), 2927–2932.

[60] Ghoting, A., Kambadur, P., Pednault, E., and Kannan, R. Nimble: a
toolkit for the implementation of parallel data mining and machine learning al-
gorithms on mapreduce. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining (2011), ACM, pp. 334–342.

179

http://www.jakemdrew.com/blog/mapreduce.htm; Accessed: 2015-02-28
http://www.jakemdrew.com/blog/mapreduce.htm; Accessed: 2015-02-28
http://blog.jakemdrew.com/2014/06/26/clustering-similar-images-using-mapreduce-style-feature-extraction-with-c-and-r/; Accessed: 2015-03-06
http://blog.jakemdrew.com/2014/06/26/clustering-similar-images-using-mapreduce-style-feature-extraction-with-c-and-r/; Accessed: 2015-03-06
http://blog.jakemdrew.com/2014/06/26/clustering-similar-images-using-mapreduce-style-feature-extraction-with-c-and-r/; Accessed: 2015-03-06
https://msdn.microsoft.com/en-us/magazine/cc163329.aspx; Accessed: 2015-02-26
https://msdn.microsoft.com/en-us/magazine/cc163329.aspx; Accessed: 2015-02-26

[61] Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sind-
hwani, V., Tatikonda, S., Tian, Y., and Vaithyanathan, S. Systemml:
Declarative machine learning on mapreduce. In Data Engineering (ICDE), 2011
IEEE 27th International Conference on (2011), IEEE, pp. 231–242.

[62] Gillick, D., Faria, A., and DeNero, J. Mapreduce: Distributed comput-
ing for machine learning. Berkley, Dec 18 (2006).

[63] Gionis, A., Indyk, P., Motwani, R., et al. Similarity search in high
dimensions via hashing. In VLDB (1999), vol. 99, pp. 518–529.

[64] Gordon, A., and Vichi, M. Fuzzy partition models for fitting a set of
partitions. Psychometrika 66, 2 (2001), 229–247.

[65] Group, C. C. Part of speech tagging demo, 2014. http://cogcomp.cs.
illinois.edu/page/demo_view/pos;AccessedOn:04/05/2015.

[66] hadooptutorial.info. Combiner in mapreduce, 2014. http://
hadooptutorial.info/combiner-in-mapreduce/;AccessedOn:04/02/2015.

[67] Haile, A. Complete .net opencl implementations,
2013. http://stackoverflow.com/questions/5654048/
complete-net-opencl-implementations;Accessed:2015-02-26.

[68] Harris, D. Baidu built a supercomputer for deep
learning, 2015. https://gigaom.com/2015/01/14/
baidu-has-built-a-supercomputer-for-deep-learning/;AccessedOn:
10/18/2015.

[69] Hornik, K. A clue for cluster ensembles.

[70] Hothorn, T. Cran task view: Machine learning and statistical
learning, 2014. http://cran.r-project.org/web/views/MachineLearning.
html;Accessed:2014-12-08.

[71] Hyman, R. W., Fukushima, M., Diamond, L., Kumm, J., Giudice, L. C.,
and Davis, R. W. Microbes on the human vaginal epithelium. Proceedings of
the National Academy of Sciences 102, 22 (2005), 7952–7957.

[72] Icaza, M. d. e. a. Mono c# compiler, 2015. http://www.mono-project.
com/docs/about-mono/languages/csharp/;Accessed:2015-11-02.

[73] (IDC), I. D. C. The digital universe in 2020, 2013. http://www.emc.com/
collateral/analyst-reports/idc-digital-universe-united-states.
pdf;Accessed:2014-12-08.

180

http://cogcomp.cs.illinois.edu/page/demo_view/pos; Accessed On: 04/05/2015
http://cogcomp.cs.illinois.edu/page/demo_view/pos; Accessed On: 04/05/2015
http://hadooptutorial.info/combiner-in-mapreduce/; Accessed On: 04/02/2015
http://hadooptutorial.info/combiner-in-mapreduce/; Accessed On: 04/02/2015
http://stackoverflow.com/questions/5654048/complete-net-opencl-implementations; Accessed: 2015-02-26
http://stackoverflow.com/questions/5654048/complete-net-opencl-implementations; Accessed: 2015-02-26
https://gigaom.com/2015/01/14/baidu-has-built-a-supercomputer-for-deep-learning/; Accessed On: 10/18/2015
https://gigaom.com/2015/01/14/baidu-has-built-a-supercomputer-for-deep-learning/; Accessed On: 10/18/2015
https://gigaom.com/2015/01/14/baidu-has-built-a-supercomputer-for-deep-learning/; Accessed On: 10/18/2015
http://cran.r-project.org/web/views/MachineLearning.html; Accessed: 2014-12-08
http://cran.r-project.org/web/views/MachineLearning.html; Accessed: 2014-12-08
http://www.mono-project.com/docs/about-mono/languages/csharp/; Accessed: 2015-11-02
http://www.mono-project.com/docs/about-mono/languages/csharp/; Accessed: 2015-11-02
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf; Accessed: 2014-12-08
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf; Accessed: 2014-12-08
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf; Accessed: 2014-12-08

[74] Indyk, P., and Motwani, R. Approximate nearest neighbors: towards re-
moving the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing (1998), ACM, pp. 604–613.

[75] Intel. Why use intelÂő cilkâĎć plus?, 2015. https://www.cilkplus.org/
;Accessed:2015-02-26.

[76] Ioffe, S. Improved consistent sampling, weighted minhash and l1 sketching.
In Data Mining (ICDM), 2010 IEEE 10th International Conference on (2010),
IEEE, pp. 246–255.

[77] John, J. P., Yu, F., Xie, Y., Krishnamurthy, A., and Abadi, M. deseo:
Combating search-result poisoning. In USENIX Security Symposium (2011),
USENIX Association.

[78] Johnson, S. C. Hierarchical clustering schemes. Psychometrika 32, 3 (1967),
241–254.

[79] Kaggle. Microsoft malware classification challenge (big 2015), 2015. https:
//www.kaggle.com/c/malware-classification;Accessed:2015-11-04.

[80] Kaggle. Microsoft malware winners’ interview: 1st place, “no
to overfitting”, 2015. http://blog.kaggle.com/2015/05/26/
microsoft-malware-winners-interview-1st-place-no-to-overfitting/
;Accessed:2015-11-02.

[81] Kammerstetter, M., Platzer, C., and Wondracek, G. Vanity, cracks
and malware: Insights into the anti-copy protection ecosystem. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security (New
York, NY, USA, 2012), CCS ’12, ACM, pp. 809–820.

[82] Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.,
Paxson, V., and Savage, S. Spamalytics: An empirical analysis of spam
marketing conversion. In Conference on Computer and Communications Secu-
rity (CCS) (Alexandria, VA, Oct. 2008).

[83] Kaplan, E., and Meier, P. Nonparametric estimation from incomplete
observations. Journal of the American Statistical Association 53 (1958), 457–
481.

[84] Keco, D., and Subasi, A. Parallelization of genetic algorithms using hadoop
map/reduce. SouthEast Europe Journal of Soft Computing 1, 2 (2012).

[85] Kent, W. J. Blat-the blast-like alignment tool. Genome research 12, 4 (2002),
656–664.

181

https://www.cilkplus.org/; Accessed: 2015-02-26
https://www.cilkplus.org/; Accessed: 2015-02-26
https://www.kaggle.com/c/malware-classification; Accessed: 2015-11-04
https://www.kaggle.com/c/malware-classification; Accessed: 2015-11-04
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/; Accessed: 2015-11-02
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/; Accessed: 2015-11-02
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/; Accessed: 2015-11-02

[86] Kmett, E. Near-duplicate image detection, 2009. http://stackoverflow.
com/questions/1034900/near-duplicate-image-detection/1076507#
1076507;Accessed:2015-03-06.

[87] Krolak-Schwerdt, S. Three-way multidimensional scaling: Formal prop-
erties and relationships between scaling methods. In Data Analysis and De-
cision Support, D. Baier, R. Decker, and L. Schmidt-Thieme, Eds., Studies
in Classification, Data Analysis, and Knowledge Organization. Springer Berlin
Heidelberg, 2005, pp. 82–90.

[88] Langfelder, P., Zhang, B., and Horvath, S. Defining clusters from a
hierarchical cluster tree. Bioinformatics 24, 5 (Mar. 2008), 719–720.

[89] Layton, R., Watters, P., and Dazeley, R. Automatically determining
phishing campaigns using the uscap methodology. In eCrime Researchers Sum-
mit (eCrime), 2010 (Oct 2010), pp. 1–8.

[90] Leontiadis, N., Moore, T., and Christin, N. Measuring and analyz-
ing search-redirection attacks in the illicit online prescription drug trade. In
USENIX Security Symposium (2011).

[91] Leontiadis, N., Moore, T., and Christin, N. Pick your poison: pricing
and inventories at unlicensed online pharmacies. In Proceedings of the fourteenth
ACM conference on Electronic commerce (2013), ACM, pp. 621–638.

[92] Leontiadis, N., Moore, T., and Christin, N. A nearly four-year longi-
tudinal study of search-engine poisoning. In Proceedings of ACM CCS 2014
(Scottsdale, AZ, Nov. 2014).

[93] Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of massive
datasets. Cambridge University Press, 2014.

[94] Levchenko, K., Chachra, N., Enright, B., Felegyhazi, M., Grier,
C., Halvorson, T., Kanich, C., Kreibich, C., Liu, H., McCoy, D.,
Pitsillidis, A., Weaver, N., Paxson, V., Voelker, G., and Savage, S.
Click trajectories: End-to-end analysis of the spam value chain. In Proceedings
of IEEE Security and Privacy (Oakland, CA, May 2011).

[95] Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Félegy-
házi, M., Grier, C., Halvorson, T., Kanich, C., Kreibich, C., Liu, H.,
McCoy, D., Weaver, N., Paxson, V., Voelker, G. M., and Savage, S.
Click trajectories: End-to-end analysis of the spam value chain. In Proceedings
of the 2011 IEEE Symposium on Security and Privacy (Washington, DC, USA,
2011), SP ’11, IEEE Computer Society, pp. 431–446.

182

http://stackoverflow.com/questions/1034900/near-duplicate-image-detection/1076507#1076507; Accessed: 2015-03-06
http://stackoverflow.com/questions/1034900/near-duplicate-image-detection/1076507#1076507; Accessed: 2015-03-06
http://stackoverflow.com/questions/1034900/near-duplicate-image-detection/1076507#1076507; Accessed: 2015-03-06

[96] Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight,
R. D., and Gordon, J. I. Obesity alters gut microbial ecology. Proceedings
of the National Academy of Sciences of the United States of America 102, 31
(2005), 11070–11075.

[97] Ley, R. E., Turnbaugh, P. J., Klein, S., and Gordon, J. I. Microbial
ecology: human gut microbes associated with obesity. Nature 444, 7122 (2006),
1022–1023.

[98] Li, L., Wang, D., Li, T., Knox, D., and Padmanabhan, B. Scene: A scal-
able two-stage personalized news recommendation system. In ACM Conference
on Information Retrieval (SIGIR) (2011).

[99] Lin, J.-L. Detection of cloaked web spam by using tag-based methods. Expert
Syst. Appl. 36, 4 (May 2009), 7493–7499. Available at http://dx.doi.org/
10.1016/j.eswa.2008.09.056.

[100] Littlejohn, C., Baldacchino, A., Schifano, F., and Deluca, P. In-
ternet pharmacies and online prescription drug sales: a cross-sectional study.
Drugs: Education, Prevention, and Policy 12, 1 (2005), 75–80.

[101] Low, Y., Gonzalez, J. E., Kyrola, A., Bickson, D., Guestrin, C. E.,
and Hellerstein, J. Graphlab: A new framework for parallel machine learn-
ing. arXiv preprint arXiv:1408.2041 (2014).

[102] Ma, J., Saul, L. K., Savage, S., and Voelker, G. M. Beyond blacklists:
learning to detect malicious web sites from suspicious urls. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining (2009), ACM, pp. 1245–1254.

[103] Marcais, G., and Kingsford, C. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics 27, 6 (2011), 764–
770.

[104] Mavrommatis, N. P. P., and Monrose, M. A. R. F. All your iframes
point to us. In USENIX Security Symposium (2008), pp. 1–16.

[105] McCoy, D., Pitsillidis, A., Jordan, G., Weaver, N., Kreibich, C.,
Krebs, B., Voelker, G., Savage, S., and Levchenko, K. Pharmaleaks:
Understanding the business of online pharmaceutical affiliate programs. In
Proceedings of USENIX Security 2012 (Bellevue, WA, Aug. 2012).

[106] McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K.,
Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly,
M., et al. The genome analysis toolkit: A mapreduce framework for analyzing
next-generation dna sequencing data. Genome research 20, 9 (2010), 1297–1303.

183

http://dx.doi.org/10.1016/j.eswa.2008.09.056
http://dx.doi.org/10.1016/j.eswa.2008.09.056

[107] Meyer, D. Support vector machines. The Interface to libsvm in package e1071.
e1071 Vignette (2012).

[108] Microsoft. Pipelines, 2013. https://msdn.microsoft.com/en-us/
library/ff963548.aspx;AccessedOn:03/31/2015.

[109] Microsoft. Numa support, 2015. https://msdn.microsoft.com/
en-us/library/windows/desktop/aa363804(v=vs.85).aspx;Accessed:
2015-02-26.

[110] Microsoft. Readerwriterlock class, 2015. http://msdn.microsoft.com/
en-us/library/system.threading.readerwriterlock.aspx;Accessed:
2015-02-28.

[111] Migliore, M. Similar image finder, 2015. https://similarimagesfinder.
codeplex.com/;Accessed:2015-03-06.

[112] Moore, T., and Clayton, R. Examining the impact of website take-down
on phishing. In Second APWG eCrime Researchers Summit (Pittsburgh, PA,
Oct. 2007), eCrime ’07, ACM.

[113] Moore, T., and Clayton, R. The Impact of Incentives on Notice and Take-
down. Springer, 2008, pp. 199–223.

[114] Moore, T., Han, J., and Clayton, R. The postmodern Ponzi scheme: Em-
pirical analysis of high-yield investment programs. In Financial Cryptography
(2012), A. D. Keromytis, Ed., vol. 7397 of Lecture Notes in Computer Science,
Springer, pp. 41–56.

[115] Moore, T., Leontiadis, N., and Christin, N. Fashion crimes: trending-
term exploitation on the web. In ACM Conference on Computer and Commu-
nications Security (2011), Y. Chen, G. Danezis, and V. Shmatikov, Eds., ACM,
pp. 455–466.

[116] Needleman, S. B., and Wunsch, C. D. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443–453.

[117] Neisius, J., and Clayton, R. Orchestrated crime: The high yield investment
fraud ecosystem. In APWG Symposium on Electronic Crime Research (2014).

[118] Ntoulas, A., Najork, M., Manasse, M., and Fetterly, D. Detecting
spam web pages through content analysis. In Proceedings of the 15th interna-
tional conference on World Wide Web (2006), ACM, pp. 83–92.

[119] openmp.org. What problem does openmp solve ?, 2008. http://openmp.
org/openmp-faq.html#Problems;Accessed:2015-02-26.

184

https://msdn.microsoft.com/en-us/library/ff963548.aspx; Accessed On: 03/31/2015
https://msdn.microsoft.com/en-us/library/ff963548.aspx; Accessed On: 03/31/2015
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363804(v=vs.85).aspx; Accessed: 2015-02-26
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363804(v=vs.85).aspx; Accessed: 2015-02-26
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363804(v=vs.85).aspx; Accessed: 2015-02-26
http://msdn.microsoft.com/en-us/library/system.threading.readerwriterlock.aspx; Accessed: 2015-02-28
http://msdn.microsoft.com/en-us/library/system.threading.readerwriterlock.aspx; Accessed: 2015-02-28
http://msdn.microsoft.com/en-us/library/system.threading.readerwriterlock.aspx; Accessed: 2015-02-28
https://similarimagesfinder.codeplex.com/; Accessed: 2015-03-06
https://similarimagesfinder.codeplex.com/; Accessed: 2015-03-06
http://openmp.org/openmp-faq.html#Problems; Accessed: 2015-02-26
http://openmp.org/openmp-faq.html#Problems; Accessed: 2015-02-26

[120] Oshana, R. Multicore software development, smu âĂŞ fall 2013, 2008.

[121] Ounit, R., Wanamaker, S., Close, T. J., and Lonardi, S. Clark: fast
and accurate classification of metagenomic and genomic sequences using dis-
criminative k-mers. BMC genomics 16, 1 (2015), 236.

[122] Ounit, R., Wanamaker, S., Close, T. J., and Lonardi, S. Clark: fast
and accurate classification of metagenomic and genomic sequences using dis-
criminative k-mers supplementary material. BMC genomics 16, 1 (2015), 236.

[123] Overflow, S. Image fingerprint, 2009.
http://stackoverflow.com/questions/596262/
image-fingerprint-to-compare-similarity-of-many-images;Accessed:
2014-06-24.

[124] Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F., and Blaser,
M. J. Bacterial biota in the human distal esophagus. Proceedings of the National
Academy of Sciences 101, 12 (2004), 4250–4255.

[125] Perls, D. N. C# string memory, 2014. http://www.dotnetperls.com/
string-memory;AccessedOn:10/18/2015.

[126] Peter Wang, I. Compare windows* threads, openmp*, in-
telÂő threading building blocks for parallel programming,
2008. http://software.intel.com/en-us/blogs/2008/12/16/
compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/
;Accessed:2015-02-26.

[127] Provos, N., Mavrommatis, P., Rajab, M., and Monrose, F. All your
iFrames point to us. In 17th USENIX Security Symposium (Aug. 2008).

[128] Pruitt, K. D., Tatusova, T., Brown, G. R., and Maglott, D. R.
Ncbi reference sequences (refseq): current status, new features and genome
annotation policy. Nucleic acids research 40, D1 (2012), D130–D135.

[129] Rajaraman, A., and Ullman, J. Mining of Massive Datasets. Mining of
Massive Datasets. Cambridge University Press, 2012.

[130] Rand, W. M. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association 66, 336 (1971), 846–850.

[131] Reid, A. D., Ford, S. A., and Lin, Y. Analyzing and transforming a com-
puter program for executing on asymmetric multiprocessing systems, Sept. 11
2007. US Patent App. 11/898,360.

185

http://stackoverflow.com/questions/596262/image-fingerprint-to-compare-similarity-of-many-images; Accessed: 2014-06-24
http://stackoverflow.com/questions/596262/image-fingerprint-to-compare-similarity-of-many-images; Accessed: 2014-06-24
http://stackoverflow.com/questions/596262/image-fingerprint-to-compare-similarity-of-many-images; Accessed: 2014-06-24
http://www.dotnetperls.com/string-memory; Accessed On: 10/18/2015
http://www.dotnetperls.com/string-memory; Accessed On: 10/18/2015
http://software.intel.com/en-us/blogs/2008/12/16/compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/; Accessed: 2015-02-26
http://software.intel.com/en-us/blogs/2008/12/16/compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/; Accessed: 2015-02-26
http://software.intel.com/en-us/blogs/2008/12/16/compare-windows-threads-openmp-intel-threading-building-blocks-for-parallel-programming/; Accessed: 2015-02-26

[132] Riek, M., Boehme, R., and Moore, T. Understanding the influence of
cybercrime risk on the e-service adoption of European Internet users. In 13th
Workshop on the Economics of Information Security (2014).

[133] Rodriguez, G. Generalized linear models, 2014. http://data.princeton.
edu/R/glms.html;Accessed:2014-04-19.

[134] Roth, D., and Zelenko, D. Part of speech tagging using a network of linear
separators. In Coling-Acl, The 17th International Conference on Computational
Linguistics (1998), pp. 1136–1142.

[135] Russinovich, M. Pushing the limits of windows: Processes and threads,
2009. http://blogs.technet.com/b/markrussinovich/archive/2009/07/
08/3261309.aspx;Accessed:2015-02-28.

[136] Shannon, C. E. A mathematical theory of communication. The Bell Systems
Technical Journal 27 (1948), 379–423.

[137] Smith, M. D., and Telang, R. Competing with free: The impact of movie
broadcasts on dvd sales and internet piracy1. MIS Q. 33, 2 (June 2009), 321–
338.

[138] Smith, T. F., and Waterman, M. S. Identification of common molecular
subsequences. Journal of Molecular Biology 147, 1 (March 1981), 195–197.

[139] SRIDHAR PAPPU, H. P. To handle the big data
deluge, hp plots a giant leap forward, 2014. https:
//ssl.www8.hp.com/hpmatter/issue-no-1-june-2014/
handle-big-data-deluge-hp-plots-giant-leap-forward?jumpid=sc_
pur3bc5n8v/dm:_N5823.186294OUTBRAININC_109138141_282642904_0_
2879120;Accessed:2014-12-08.

[140] Toub, S. Patterns of parallel programming-understanding and applying par-
allel patterns with the .net framework 4 and visual c#. Parallel Computing
Platform, Microsoft Corporation. Version (February 16, 2010) (2010).

[141] Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M.,
Knight, R., and Gordon, J. I. The human microbiome project. Nature
449, 7164 (2007), 804–810.

[142] Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram,
R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar,
D. S., and Banfield, J. F. Community structure and metabolism through
reconstruction of microbial genomes from the environment. Nature 428, 6978
(2004), 37–43.

186

http://data.princeton.edu/R/glms.html; Accessed: 2014-04-19
http://data.princeton.edu/R/glms.html; Accessed: 2014-04-19
http://blogs.technet.com/b/markrussinovich/archive/2009/07/08/3261309.aspx; Accessed: 2015-02-28
http://blogs.technet.com/b/markrussinovich/archive/2009/07/08/3261309.aspx; Accessed: 2015-02-28
https://ssl.www8.hp.com/hpmatter/issue-no-1-june-2014/handle-big-data-deluge-hp-plots-giant-leap-forward?jumpid=sc_pur3bc5n8v/dm:_N5823.186294OUTBRAININC_109138141_282642904_0_2879120; Accessed: 2014-12-08
https://ssl.www8.hp.com/hpmatter/issue-no-1-june-2014/handle-big-data-deluge-hp-plots-giant-leap-forward?jumpid=sc_pur3bc5n8v/dm:_N5823.186294OUTBRAININC_109138141_282642904_0_2879120; Accessed: 2014-12-08
https://ssl.www8.hp.com/hpmatter/issue-no-1-june-2014/handle-big-data-deluge-hp-plots-giant-leap-forward?jumpid=sc_pur3bc5n8v/dm:_N5823.186294OUTBRAININC_109138141_282642904_0_2879120; Accessed: 2014-12-08
https://ssl.www8.hp.com/hpmatter/issue-no-1-june-2014/handle-big-data-deluge-hp-plots-giant-leap-forward?jumpid=sc_pur3bc5n8v/dm:_N5823.186294OUTBRAININC_109138141_282642904_0_2879120; Accessed: 2014-12-08
https://ssl.www8.hp.com/hpmatter/issue-no-1-june-2014/handle-big-data-deluge-hp-plots-giant-leap-forward?jumpid=sc_pur3bc5n8v/dm:_N5823.186294OUTBRAININC_109138141_282642904_0_2879120; Accessed: 2014-12-08

[143] Ukkonen, E. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science 92, 205 (1992), 191–211.

[144] Urvoy, T., Chauveau, E., Filoche, P., and Lavergne, T. Tracking web
spam with html style similarities. ACM Trans. Web 2, 1 (Mar. 2008), 3:1–3:28.

[145] Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L.,
Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson,
W., et al. Environmental genome shotgun sequencing of the sargasso sea.
science 304, 5667 (2004), 66–74.

[146] Vinga, S., and Almeida, J. Alignment-free sequence comparison — A re-
view. Bioinformatics 19, 4 (2003), 513–523.

[147] Wang, D., Savage, S., and Voelker, G. Cloak and dagger: Dynamics of
web search cloaking. In Proceedings of the 18th ACM Conference on Computer
and Communications Security (2011), ACM, pp. 477–490.

[148] Wang, D. Y., Der, M., Karami, M., Saul, L., McCoy, D., Savage, S.,
and Voelker, G. M. Search + seizure: The effectiveness of interventions
on SEO campaigns. In ACM Internet Measurement Conference (IMC) (2014),
ACM.

[149] Wang, D. Y., Savage, S., and Voelker, G. M. Cloak and dagger: dy-
namics of web search cloaking. In Proceedings of the 18th ACM conference
on Computer and communications security (New York, NY, USA, 2011), CCS
’11, ACM, pp. 477–490. Available at http://doi.acm.org/10.1145/2046707.
2046763.

[150] Wang, L. Microsoft malware classification challenge (big 2015) first place team:
Say no to overfitting, 2015. https://github.com/xiaozhouwang/kaggle_
Microsoft_Malware/blob/master/Saynotooverfitting.pdf;Accessed:
2015-11-02.

[151] Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. Naive
bayesian classifier for rapid assignment of RNA sequences into the new bacterial
taxonomy. Applied and Environmental Microbiology 73, 16 (2007), 5261–5267.

[152] Wardman, B., and Warner, G. Automating phishing website identification
through deep md5 matching. In eCrime Researchers Summit, 2008 (2008),
IEEE, pp. 1–7.

[153] Webb, S., Caverlee, J., and Pu, C. Predicting web spam with http session
information. In Proceedings of the 17th ACM conference on Information and
knowledge management (2008), ACM, pp. 339–348.

187

http://doi.acm.org/10.1145/2046707.2046763
http://doi.acm.org/10.1145/2046707.2046763
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf; Accessed: 2015-11-02
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf; Accessed: 2015-11-02
https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/master/Saynotooverfitting.pdf; Accessed: 2015-11-02

[154] Wernersson, R., Schierup, M. H., Jørgensen, F. G., Gorodkin,
J., Panitz, F., Stærfeldt, H.-H., Christensen, O. F., Mailund, T.,
Hornshøj, H., Klein, A., et al. Pigs in sequence space: a 0.66 x coverage
pig genome survey based on shotgun sequencing. BMC genomics 6, 1 (2005),
70.

[155] Wikipedia. Luminance, 2015. http://en.wikipedia.org/wiki/Luminance;
Accessed:2014-06-24.

[156] Wikipedia. Relative luminance, 2015. http://en.wikipedia.org/wiki/
Luminance_(relative)#cite_note-1;Accessed:2014-06-24.

[157] Wood, D. E., and Salzberg, S. L. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol 15, 3 (2014), R46.

[158] Wu, R. Deep image, 2015. https://youtu.be/NLyYG_ih_ak;AccessedOn:
10/18/2015.

[159] Xu, J. Opencl–the open standard for parallel programming of heterogeneous
systems.

[160] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and
Stoica, I. Spark: cluster computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud computing (2010), pp. 10–10.

188

http://en.wikipedia.org/wiki/Luminance; Accessed: 2014-06-24
http://en.wikipedia.org/wiki/Luminance; Accessed: 2014-06-24
http://en.wikipedia.org/wiki/Luminance_(relative)#cite_note-1; Accessed: 2014-06-24
http://en.wikipedia.org/wiki/Luminance_(relative)#cite_note-1; Accessed: 2014-06-24
https://youtu.be/NLyYG_ih_ak; Accessed On: 10/18/2015
https://youtu.be/NLyYG_ih_ak; Accessed On: 10/18/2015

	INTRODUCTION
	Motivation
	Methods and Prior Work
	MapReduce Style Processing Pipelines
	Minhashing

	Structure and Contribution

	THE COLLABORATIVE ANALYTICS FRAMEWORK FOR PARALLEL MACHINE LEARNING
	Introduction
	Primary Types of Multicore Development
	Asymmetric Multiprocessing
	Symmetric Multiprocessing

	Multicore Development Alternatives
	OpenMP
	OpenCL
	Thread Building Block
	Message Passing Interface
	Cilk++

	Rapid Multicore Development Using C#
	Thread Safe Locking and Memory Barriers
	Fork Join
	Parallel Pipelines
	Thread Pools and Work Stealing
	Parallel Divide and Conquer
	MapReduce and Spark
	Process Level Parallelism

	A Framework for Parallel Machine Learning
	The Collaborative Analytics Framework for Parallel Machine Learning
	Map Reduction Aggregation
	Map Reduction Aggregation for Web Document De-duplication and Classification

	The Classification Metric Function
	Lossy Compression Using Locality Sensitive Hashing
	Applying The Collaborative Analytics Framework to Machine Learning Tasks
	Managing Speed Differences Between Pipeline Producers and Consumers

	A Framework for Parallel Feature Extraction
	Extracting Luminosity Histogram Features From Images in Parallel Using C#
	Extracting the RGB Channels
	Creating the Distance Matrix in Parallel
	Hierarchical Agglomerative Clustering using R
	Conclusion

	DEVELOPING FEATURES FOR BIOINFORMATICS
	Introduction
	Sequence Feature Extraction
	Background
	Word Extraction
	Minhashing
	MapReduce Style Processing

	Extracting Bioinformatics Features for Abundance Estimation
	Word Extraction for Abundance Estimation
	Creating Words from Sequences that do not Fit into Memory
	Creating Minhash Signatures from Sequences that do not Fit into Memory

	Conclusion

	S.T.R.A.N.D.
	Learning Category Signatures
	Mapping Sequences into Words
	Creating Sequence Minhash Signatures
	Reducing Sequence Minhash Signatures into Category Signatures

	Classification Process
	Results
	Choosing Word Size and Signature Length
	Comparison of Strand and RDP on the RDP Training Data
	Comparison of Strand and RDP on the Greengenes Data
	Conclusion

	Using Strand for Abundance Estimation
	Map Reduction Aggregation
	Minhashing during Map Reduction Aggregation

	Training Data Compression
	Merge Sort Processing and Training Worker Deduplication
	64-Bit Minhash Value Compression
	Classification Training Database Optimization

	Classification Function Processing
	Applying Strand to Machine Learning Tasks
	Strand Computing Clusters
	Results
	Strand Cluster Computing Benefits
	Strand vs. CLARK HiSeq Performance
	Strand Training on the NCBI Complete RefSeq Database
	Conclusion

	DEVELOPING FEATURES FOR CYBERCRIME
	Developing Features to Identify Replicated Criminal Websites
	Process for Identifying Replicated Criminal Website Features
	Data Collection Methodology
	Feature Extraction Processing
	Selecting an Appropriate Distance Metric
	Map Reducing Distance Matrices
	Identifying and Extracting Website Features
	Website Features
	Constructing Distance Matrices

	Developing Features to Identify Websites Selling Counterfeit Goods
	Data Collection Methodology
	Constructing Search Queries
	Gathering Data on Websites in Search Results
	Feature Selection and Extraction

	Conclusion

	IDENTIFICATION OF PONZI SCHEME AND ESCROW FRAUD WEBSITES
	Introduction and Background
	Process for Identifying Replicated Criminal Websites
	Optimized Combined Clustering Process
	Cluster Cut-Height Selection
	Individual Clustering
	Best Min Combined Clustering

	Evaluation Against Ground-Truth Data
	Performing Manual Ground Truth Clusterings
	Results

	Examining the Clustered Criminal Websites
	Evaluating Cluster Size
	Evaluating Cluster Persistence

	Related Work
	Concluding Remarks

	DETECTION OF WEBSITES SELLING COUNTERFEIT GOODS
	Introduction
	Classifying Websites Selling Counterfeits
	Building and evaluating the classifiers
	The Blended Model Approach
	Counterfeit Goods Classification Feature Importance

	Related Work
	Conclusion

	APPLYING STRAND TO MALWARE CLASSIFICATION
	The Training and Classification Input Data
	Challenge Evaluation, Competitors, and Results
	Applying Strand to Microsoft Malware Classification Challenge
	Developing Malware Features for Strand
	Malware Classification Results Using Strand
	Conclusion

	CONCLUSION AND FUTURE WORK
	Concluding Remarks
	Future Research Opportunities

	REFERENCES

