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Abstract—Malware spread among websites and between
websites and clients is an increasing problem. Search engines
play an important role in directing users to websites and are a
natural control point for intervening, using mechanisms such
as blacklisting. The paper presents a simple Markov model
of malware spread through large populations of websites and
studies the effect of two interventions that might be deployed by
a search provider: blacklisting infected web pages by removing
them from search results entirely and a generalization of
blacklisting, called depreferencing, in which a website’s ranking
is decreased by a fixed percentage each time period the site
remains infected. We analyze and study the trade-offs between
infection exposure and traffic loss due to false positives (the
cost to a website that is incorrectly blacklisted) for different
interventions. As expected, we find that interventions are
most effective when websites are slow to remove infections.
Surprisingly, we also find that low infection or recovery rates
can increase traffic loss due to false positives. Our analysis also
shows that heavy-tailed distributions of website popularity, as
documented in many studies, leads to high sample variance
of all measured outcomes. These result implies that it will
be difficult to determine empirically whether certain website
interventions are effective, and it suggests that theoretical
models such as the one described in this paper have an
important role to play in improving web security.

I. INTRODUCTION

The network worms which caused havoc ten years ago,
such as Code Red, actively spread by ‘pushing’ themselves
onto vulnerable systems through automated scanning. In
contrast, a major problem today is computer infections that
propagate via a ‘pull’-based mechanism. For example, in a
drive-by download, an attacker infects a victim computer’s
web browser without direct interaction [1], [2]. In this
scenario, the attacker first compromises an otherwise benign
web server, injecting executable code into its web pages, and
then waits for users to visit the infected website and acquire

the infection. Because many users arrive at websites through
search, search engines have become a crucial battleground
over the distribution of malware.

Search providers have an incentive to defend against
such attacks because they degrade search results. A typical
approach is that taken by Google, which attempts to detect
and blacklist websites that host malicious content [3]. Black-
listing can take the form of displaying a warning message via
a client side browser plugin to discourage users from visiting
a website, or outright removal from the search results.
Blacklisting can be used to combat many types of malicious
content, and in a web environment where new attacks are
developed frequently, it is important to have a general ap-
proach to reducing infection. However, because blacklisting
can dramatically reduce visits to websites, search engines
are very careful to avoid false positives (i.e., flagging an
uninfected website as infected). Such caution can delay
responses, which in turn may raise infection rates.

In this paper we devise a concise Markov model to study
how web infections spread through large populations of web-
sites, and explore how infections might be contained through
blacklisting. We also propose a generalization of blacklisting
called depreferencing, where a search engine reduces a web-
site’s ranking in search results in proportion to the engine’s
certainty that the website is infected. Depreferencing can be
more tolerant of false positives than a binary response such
as blacklisting, because the scale of the intervention can be
adjusted to specific levels of false positives. Depreferencing
provides a controllable depreferencing parameter, σ, that can
be tuned to achieve specific reductions in infections or false
positives. We derive exact analytic expressions that relate
the depreferencing parameter, σ, to infection rates and traffic
loss due to false positives. We also identify critical points for
the model parameter values that govern the trade-off between
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Figure 1. Variation in malicious IP addresses over time.

infection and traffic loss.
We believe that modeling is particularly well-suited to the

task of examining techniques for controlling malware spread
over the web. First, it allows us to examine unconventional
interventions, such as depreferencing, at low cost. Given
the relatively grim status quo in web security, more radical
countermeasures deserve consideration, and modeling offers
a good way to assess the impact of new strategies without
the expense and commitment of an actual implementation.
Second, modeling can deal with the extreme dynamics
of the web better than empirical exploration alone. Our
analysis shows that the heavy-tailed distribution of website
popularity leads to high variance in outcomes. This high
sample dependence makes it extremely difficult to conduct
reliable comparative assessments of the benefits of different
interventions, especially with a limited number of empirical
measurements. For example, the infection of a single popular
site can suddenly and dramatically increase overall user
infection rates, an effect that can be seen in Figure I, which
contains data on malicious IP addresses collected from the
Internet Storm Center1. We show that this variance can
obscure even large improvements in infection and recovery.
With the modeling approach, we can easily run many simu-
lations, and more reliably estimate the comparative impacts
of different intervention strategies.

Finally, modeling lets us examine the impact of interven-
tions across many stakeholders and identify tensions that
may arise. For instance, improved security for search opera-
tors and consumers may be achieved in part at the expense of
increased risk of incorrect blacklisting for website operators.
Modeling allows us to more precisely quantify these trade-
offs.

1http://isc.sans.org

II. MODELING INFECTIONS

We model a population of servers that is under attack
from malicious agents, as depicted in Figure 2. We do not
model specific types of infections, but rather assume that an
infection is any event that compromises a website such that
it could be used to spread malware to users. Once infected, a
server recovers when an administrator notices the infection
and clears it. In this paper we explore the impact of search
provider interventions and so are only interested in clients
that connect to servers via referrals from a search provider.
Hence, in our model, client exposure to infection is driven
solely by website popularity as determined by the search
provider. In an attempt to improve search results, the search
provider monitors websites to determine whether they are
infected, and may incorrectly identify uninfected websites
as infected. We assume that an administrator clears false
identifications of infection at the same rate as real infections.

Our model includes a population of n websites2, each
with a popularity, ωi, drawn at random from a specified dis-
tribution. ωi represents the total number of visits a website
receives. The key outcome we are interested in measuring
is client exposure, which is directly proportional to the
expected number of visits that infected websites receive.
At any time, a website is in one of three possible states:
infected, uninfected, or falsely infected (i.e. classified by
the search provider as infected when it is actually not). Each
server transitions between these states at discrete time steps,
according to the Markov chain depicted in Figure 3. The
key parameters are: ρ, the probability of a website becoming
infected; γ, the probability of recovering from an infection;
and f , the probability of falsely being classified as infected.

We make the simplifying assumption that the probabilities
ρ, γ, and f are constant across the population of servers and
time invariant. Unfortunately, data on the exact distributions
of these parameters are not readily available and often
contradictory. For example, there are no data supporting
a systematic relationship between a website’s popularity
and its susceptibility to infection. We examined a sample
of websites infected with malware that were reported to
StopBadware from 2007 to 2009, and found that more
popular websites (as ranked by Alexa) are slightly more
likely to be infected. By contrast, Moore et al. [4] found
that more popular web search terms are less likely to include
infected websites in their results. In both cases, the effects
are small so we argue that assuming constant probabilities
is reasonable.

Our model is discrete time; an alternative approach is to
model the population of servers using differential equations.
In the case of large n, the steady state distribution of
infection probability would be exactly the infection rates in
a differential equation model [5]. We use a discrete-time

2We will use the terms website and web server, or simply server,
interchangeably.

http://isc.sans.org


Figure 2. Server and client infections via search engine referral. Figure 3. Model of website infections and client exposure.

model instead because it allows us to easily incorporate
time-dependent phenomena (such as our interventions) and
distributions of values (such as traffic), and it is simpler to
explore transient effects.

III. MODELING INTERVENTIONS

We model two forms of intervention: blacklisting, which
is currently used by search engines, and a hypothetical
approach called depreferencing, which offers a way to adjust
intervention parameters to specifically control the trade-off
between infections and traffic loss due to false positives.

A. Blacklisting

A common approach taken by search engines that detect
a compromised website is to inform the user in the search
results (through a client side application), before the user
has a chance to visit the website, and then to produce further
warnings if the user persists in attempting to visit the web-
site. This is equivalent to blacklisting the site because users
are unlikely to ignore the warning.3 Because blacklisting
prevents the website from receiving all or nearly all of its
search traffic, minimizing false positives is essential. For
example, Rajab et al. [6] claim that Google’s Safe Browsing
infrastructure “generates negligible false positives.”

We assume that blacklisting takes a fixed number of time
steps to detect a compromised website and blacklist it. We
refer to this as the detection delay, denoted β. A website
infected at time t will be blacklisted at time t + β. Once
blacklisted, the traffic to that the website is set to zero, i.e.
ωi = 0. Formally, if a website, i, is infected at time x, its
traffic, ω̂i, at time t > x is

ω̂i =

{
ωi, if t− x < β

0, if t− x ≥ β
(1)

3In Google, clicking on a result labeled infected takes the user to a
warning page with a small text URL at the bottom of the page which the
user has to copy and paste into the browser navigation bar.

The time period β captures the notion that it will take a
search engine a certain amount of time to determine that a
website is compromised with high certainty (negligible false
positives). Thus β accounts for how frequently the website
is crawled, how much computational time is required to
confirm the infection, how much the search engine is willing
to invest in malware detection, and other possibilities, such
as giving the compromised site a certain grace period to
clean up the infection.

In the model, we assume that immediately after a website
recovers, its popularity is restored to its previous value.
That is, once a website has been cleaned, the administrator
informs the search engine and the blacklisting is removed
without delay. In reality, there would be a small delay
before the blacklisting is removed. For example, when an
administrator requests Google to run an automated test for
malware, it will take at most a few hours to complete [7],
and up to 24 hours for the malware warning to disappear
from all search results. Because the time period is small
and constant, we can exclude it from our model without
significantly changing the results.

B. Depreferencing

We explore a generalized hypothetical intervention, called
depreferencing, which, to the best of our knowledge, is not
actually implemented by any existing search engine. The
idea is that when a search engine detects a possibility of
infection in a website, it reduces the traffic that website
receives. This could be implemented by reducing the rank
of that website in the search results, or probabilistically
providing warnings to users. Because the response does
not block all traffic to the website, but rather reduces the
volume of traffic, the detection process can tolerate false
positives, allowing the search engine to react more rapidly
and aggressively. Search providers could use coarser and
less precise detectors to crawl websites more frequently,
requiring significantly less computation time to classify



websites as infected.
We model this intervention by reducing the popularity

of a website by a fixed percentage every time step after
it is discovered that the website is infected. If a website is
infected at time x, an infected website’s traffic at time t > x
is

ω̂i =

{
ωi, if t− x < β

σx−β+1ωi, if t− x ≥ β
(2)

where 0 ≤ σ ≤ 1 is the depreferencing parameter, which
controls the strength of the response. Note that Equation 1
is equivalent to Equation 2 when σ = 0. We believe that
adjusting search results is a plausible response that would
be easy to implement. For example, a search engine like
Google could simply reduce the page ranks of infected
websites, which should directly affect their popularity in
search results. Similarly to blacklisting, we assume that
when a website recovers from an infection, its popularity
is immediately restored to its original value. Because the
response is less drastic, search engines may be able to reduce
the detection delay β in this new intervention.

Equation 2 is one of an even more general class of
methods for combating exposure to infection. We could
define a general g(ωi, x), such that g is monotonically
decreasing in time. For example g could be a linear or
logistic function. We choose an exponential decline as it
seems a natural fit for our application. Investigation into
other forms appropriate for other applications is left for
future work.

As a consequence of the potentially more rapid and
hence imprecise detection of compromised sites, our model
includes a constant probability f that an uninfected website
is classified as compromised and has its rank reduced. This
is in contrast to the blacklisting approach, where we as-
sume there are negligible false positives. For depreferencing,
we assume that websites that are incorrectly classified as
compromised recover at the same rate, γ, as compromised
websites. In other words, the process of recovery is the same
whether a website is actually infected or not. This requires
that the administrator realize that the website is infected (for
example, users of Google’s Webmaster Tools are notified
when their sites are infected) and that appropriate steps are
taken to correct the problem.

We do not model false negatives, i.e. infected websites
that go undetected, because our model studies the effect of
interventions on client infection rates, and we assume that
in both blacklisting and depreferencing the detection process
has similar levels of false negatives. Hence, the false negative
rates should not affect comparison of the outcomes. From
a practical perspective, data on false negatives are rare or
non-existent because they are extremely difficult to gather.
We leave the analysis of false negatives to future work.

IV. ANALYSIS

This section analyzes the mathematical properties of the
model described in the previous section. First we describe
the steady state values of the Markov chain shown in
Figure 3. Second, we analyze the first and second moments
of the random variables that define the traffic loss and the
number of clients exposed to infection. We then provide
expressions that relate the intervention parameters to the
infection exposure and traffic loss, and identify critical
control points.

A. Steady State Distribution

Let the state of a server i in the Markov chain in Figure 3
be the random variable Si ∈ {I,N, F}, where I denotes
infection, N denotes no infection and F denotes a false
positive infection. It is easy to see that the Markov chain
is ergodic except for some degenerate cases such as f =
1, γ = 1, ρ = 0. However, such cases are unlikely to occur
in the real world.

Because our Markov chain is ergodic it is guaranteed to
converge to a unique stationary distribution, which is given
by

Pr[Si = I] =
ρ

ρ+ γ
(3)

Pr[Si = N ] =
γ

(f + ρ+ γ)
(4)

Pr[Si = F ] =
fγ

(γ + ρ)(f + γ + ρ)
(5)

Moreover, because this is a finite time-homogeneous
ergodic Markov chain, it will have a short mixing time.
Hence we focus on the steady-state in the remainder of the
analysis.

B. Client Exposure and Website Loss

The probability that a website becomes infected at a
time t − x and remains infected until time t depends on
the probability that the website was not infected at time
t − (x + 1), became infected at time t − x, and remained
infected for the next x timesteps. More formally, let Ix
denote the event that a server i has been in a state of infection
for exactly x time steps. Then

Pr[Si = Ix] = ρ(1− Pr[Si = I])(1− γ)x (6)

Observe that the events Si = Ix and Si = Ix′ , with x 6=
x′, are mutually exclusive, e.g. a server cannot be infected
for exactly 5 and exactly 6 time steps.

Next we derive an expression for the random variable
Xi(β, σ), which describes the number of clients exposed
to infection from a website i, when the search provider
implements an intervention controlled by the parameters β
and σ. Recall that β is the detection delay for infection
identification and σ is the depreferencing parameter, i.e.,



the strength of the response. The expectation of exposure to
infection from website i is then

E[Xi(β, σ)] =

β−1∑
x=0

ωi
ργ(1− γ)x

ρ+ γ
+

∞∑
x=β

ωiσ
x−β+1 ργ(1− γ)x

ρ+ γ

=
ωiργ

ρ+ γ

[
1− (1− γ)β

γ
+

σ(1− γ)β

1− (σ(1− γ))

]
(7)

The above expression simplifies to ωiPr[Si = Ii] when no
intervention is taken, which would correspond to β =∞ or
σ = 1.

The other important random variable we are interested in
is Li(β, σ), which represents the traffic lost by a website
i as a consequence of false positives. Following a similar
analysis to the earlier one for client exposure, if Fx denotes
being in the false positive state for x time steps, we have

Pr[Si = Fx] = fPr[Si = U ](1− (γ + ρ))x (8)

The lost traffic at a specific time will be ωi−ω̂i. Substituting
for ω̂i as given by Equation 2, the expected traffic loss is

E[Li(β, σ)] =
ωifγ(1− (ρ+ γ))β

f + γ + ρ

[
1

γ + ρ
− σ

1− σ(1− (γ + ρ))

]
(9)

We can then define the infection exposure, which is the
fraction of traffic exposed to infection from all websites, as

X(β, σ) =

∑n
i Xi∑n
i ωi

(10)

and the overall traffic loss due to false positives as

L(β, σ) =

∑n
i Li∑n
i ωi

(11)

Using linearity of expectation, the expressions for
E[X(β, σ)] and E[L(β, σ)] are simply those in Equation 6
and Equation 8 respectively, while omitting ωi, specifically:

E[X(β, σ)] =

ργ

ρ+ γ

[
1− (1− γ)β

γ
+

σ(1− γ)β

1− (σ(1− γ))

]
(12)

E[L(β, σ)] =
fγ(1− (ρ+ γ))β

f + γ + ρ

[
1

γ + ρ
− σ

1− σ(1− (γ + ρ))

]
(13)

We note that both of the infection exposure and the traffic
loss are independent of the distribution from which the ωi’s
are drawn, or how many servers there are.

The effectiveness of the depreferencing parameter, σ, and
the detection delay, β, in the control strategy for E[X(β, σ)],

depends only on the recovery rate γ. If γ is particularly large
(a fast recovery rate), then any intervention will have a small
effect. Only when websites are slow to react to infections
are interventions which alter traffic likely to have significant
impact.

Conversely, ρ and γ both affect E[L(β, σ)]. In particular,
a decrease in the infection rate ρ or the recovery rate γ will
cause an increase in loss due to false positives for a fixed
false positive rate f . Intuitively, a website that is unlikely to
be in the infected state is more vulnerable to being falsely
infected.

We now determine the variance in X(β, σ) and L(β, σ).
Because each of the Xi’s is independent and the sum of the
traffic is a constant,

V ar[

∑n
i Xi∑n
i ωi

] =

∑n
i V ar[Xi]

(
∑n
i ωi)

2 (14)

Additionally, variance can be defined as V ar[Xi(β, σ)] =
E[Xi(β, σ)

2]−E[Xi(β, σ)]
2. Using these two facts and some

simple algebra we have:

V ar[X(β, σ)] =
(
E[X(β, σ2)]− E[X(β, σ)]2

) ∑n
i=1 ω

2
i

(
∑n
i=1 ωi)

2

(15)
If the ωi’s are drawn from a distribution with finite

variance and expectation and n is large, then we can apply
the central limit theorem to Equation 15 to rewrite it in terms
of the distribution of ωi’s

V ar[X(β, σ)] =(
E[X(β, σ2)]− E[X(β, σ)2]

)(V ar[ωi] + E[ωi]2

nE[ωi]2

)
.

(16)

Observe that Equation 16 is monotonically decreasing in
the number of servers n. So as the population of websites
increases we expect the variance in the fraction of traffic
exposed to infection to go to 0.

It is almost certain, however, that the distribution of ωi
for real webservers is heavy-tailed and does not have finite
variance or finite expectation [8]–[10]. In the case of a
heavy-tailed or power-law distribution of ωi, the variance
V ar[X] does not converge to a single value for large n, but
to a distribution of values. Furthermore, because the sum
of power-law i.i.d. random variables exhibits heavy tailed
behavior [11] [12], the distribution of V ar[X(β, σ)] will
also exhibit heavy tailed behavior.

The sum of power law distributed variables can be
approximated by the maximum over the variables [13],
which means that the last fraction in Equation 15 can be
approximated as 1 for particularly heavy tailed distributions
and large n, i.e. ∑n

i=1 ω
2
i

(
∑n
i=1 ωi)

2
→ 1 (17)



If we take this as an upper bound, we see that improving
either σ or β to lower infection will also lower the variance
in the infection exposure rate. Depending on the value of
the exponent in the distribution of traffic, V ar[X(β, σ)] may
not have finite variance or expectation. As we discuss later,
this is important because it implies that empirical studies of
infection exposure (or traffic loss) are likely to be highly
sample dependent, and that even significant changes to the
variables like ρ and γ can be hard to discern.

A similar analysis yields slightly different results for
traffic loss:

V ar[L(β, σ)] =(
2E[L(β, σ)]− E[L(β, σ2)]− E[L(β, σ)]2

) ∑n
i=1 ω

2
i

(
∑n
i=1 ωi)

(18)

C. Critical Values

In general, changing parameter values from one set,
(β, σ), to another, (β′, σ′), will result in a change in in-
fection exposure, i.e., E[X(β, σ)] 6= E[X(β′, σ′)]. However,
there could be some settings of β′ and σ′, such that the
outcome will not change, i.e., E[X(β, σ)] = E[X(β′, σ′)].
We call these settings, or transition points, the critical values
for the parameters.

The critical value, σX , for the depreferencing parameter is
the most important, because we expect that search providers
will have more control over σ than β. For example, a new
detection algorithm may require a different β′; the search
provider could then use the critical value of σX to ensure
that the infection exposure did not change.

To derive the critical value for the infection exposure, we
first calculate an expression for the precise value of σ needed
to achieve a particular infection exposure rate E[X(β, σ)] =
ξ, as

σ =

(ρ+γ)ξ
ργ − 1−(1−γ)β

γ

(1− γ)
[
(ρ+γ)ξ
ργ − 1−(1−γ)β

γ

]
+ (1− γ)β

(19)

We can then derive the critical value for the infection
exposure by substituting E[X(β′, σ′)] for ξ in Equation 19,
which gives

σX =
a

γ + a(1− γ)
(20)

where a is defined as

a = 1− (1− γ)β−β
′
+
σγ(1− γ)β−β′

1− σ(1− γ)
(21)

Equation 21 shows the critical value needed to ensure
the infection exposure does not change when β changes.
An alternative goal might be to ensure that the traffic loss
due to false positives does not change with a new value
for β, i.e. E[L(β′, σ′)] = E[L(β, σ)]. This will be given
by another critical value, σL. Once again, we first derive

an expression for the precise value of σ needed to attain a
particular expected traffic loss fraction E[L(β, σ)] = λ,

σ =

1
ρ+γ −

λ(f+γ+ρ)
fγ(1−(ρ+γ))β

1 + (1− (ρ+ γ))
[

1
ρ+γ −

λ(f+γ+ρ)
fγ(1−(ρ+γ))β

] (22)

Setting E[L(β′, σ′)] = λ in Equation 22, we get

σL =
b

1 + b(1− γ − ρ)
(23)

where b is defined as

b =
1

γ + ρ
− (1− γ − ρ)β−β

′
[

1

γ + ρ
− σ

1− σ(1− γ − ρ)

]
(24)

As can be seen from Equation 23, the critical value for
the traffic loss is independent of the false positive rate f .

Using Equation 20 and Equation 23 in combination, a
search provider has the ability to decide how to adjust σ to
balance an increase in the traffic loss against an increase in
infection exposure.

V. EXPERIMENTAL RESULTS

To verify the results derived in Section IV we used a
Monte Carlo simulation of the model described in Section II.
Unless otherwise noted, we used the following parameter
settings for all experiments: ρ = 0.01, γ = 0.1, and
n = 1000. Although we believe that these parameter settings
are plausible, our goal is not to provide a precise match
with real-world outcomes, but rather to investigate more
general consequences of features such as variance and the
comparative efficacy of interventions. For each experiment,
we conducted 1000 runs, and each run was 75 time steps.
This length is sufficient for the model to reach a steady state.

We examine two different distributions throughout the
experiments: uniform, with ωi ∝ Uniform(0, 1), and
power law with ωi ∝ xα with α = −1.4. Although these
two distributions are likely not precisely representative of
the real world, they are useful in that they represent two
possible extremes of variance (finite and undefined).

In reality, the distribution is likely heavy-tailed, possibly
a power-law [8]–[10]. We found that a power-law with an
exponent of α = −1.4 provides a good fit with empirical
data on website popularity, as can be seen in Figure 4.
We calculated the exponent for a random sample of 10,000
websites listed in the top 1 million websites according
to the web-analytics firm Alexa, using estimates for the
daily number of visits obtained by querying the Alexa Web
Information Services API.4

4http://aws.amazon.com/awis/

http://aws.amazon.com/awis/


Figure 4. Empirically observed website traffic follows a power-law
distribution with α = −1.4.

A. Popularity Distribution

According to the analysis in Section IV, distributions of
website popularity with undefined variance will result in
large fluctuations in client exposure to infection and will
be highly dependent on the sample of servers chosen. This
is confirmed in our experiments, as can be seen in Figure 5.
The uniform distribution of website popularity results in
low variance in client exposure (Figure 5a), whereas the
power law website popularity results in very high variance,
both in a single run of the model and among different
runs (Figure 5b).5 For both popularity distributions, the
experimental average of the runs rapidly converges to the
expected steady-state value for X (0.091), although power-
law distributions can yield X values as high as 0.96 in
individual runs, an order of magnitude higher than the
expected value.

Figure 6 shows the variation in individual runs more
clearly. Figure 6a shows three different runs of the simu-
lation with the same parameters, ρ = 0.01, γ = 0.1. There
are large jumps in client exposure to infection that occur
when the more popular websites get infected, followed by
plateaus before those websites recover, and then abrupt drops
after recovery. Figure 6b shows two runs of the model with
different infection and recovery rate parameters. Strikingly,
the run with the infection rate cut in half and the recovery
rate doubled, seems to exhibit worse infection behavior. This
clearly illustrates why it might be difficult to determine
whether web security improvements are effective. The high
variance in the runs illustrates the importance of modeling,
as running experiments in the real world could require many
trials over long periods of time to reach conclusions with any
confidence.

5Because the variance is undefined in general for a power-law, we
substitute the run sample values of the ωi’s into Equation 15 to compute
the theoretical variance shown in Figure 5b.

We also tested distributions other than uniform and power-
law and confirmed the theoretical prediction that distri-
butions with finite variance produce low variance in the
measured outcome, whereas those with undefined variance
produce high variance in the measured outcome (results not
shown).

B. Interventions

Figure 7 demonstrates the effect of varying the detection
delay, β, on the steady state client exposure rate. For both
uniform and power-law popularity distributions, blacklisting
is effective only if implemented quickly, i.e. before websites
have had sufficient time to recover. The likelihood of remain-
ing infected for t time steps is (1 − γ)t, which becomes
exponentially small for large t. For example, once β > 40,
the steady state expected exposure is very close to the
theoretical value with no interventions (around 0.091). Thus,
for larger β, most infections will resolve before infected
websites are blacklisted. The precise relationship between γ
and β is given by Equation 7.

The results of varying the depreferencing parameter, σ,
are shown in Figure 8. Because proportional depreferencing
of popularity has an exponential impact on the ranking
(Equation 2), even large values of σ can reduce infection
rates significantly, for example, when σ = 0.9, the steady
state client infection rate is half of the baseline value.

Depreferencing gives finer control to search engines,
because adjusting σ should be relatively easy, unlike trying
to reduce β, the control parameter for blacklisting. This
finer control might allow for algorithms that produce more
false positives (which in turn would reduce the number of
missed infections), because the effects of being mislabeled
as infected could have far less impact on a website that
was moved down in the search rankings rather than being
blacklisted.

C. False Positives

Depreferencing makes it feasible to use imprecise de-
tection algorithms that trade faster detection for higher
false positives. In our model, this would translate into a
higher value for f , the false positive probability. Figure 9
explores the impact of f on the change in traffic loss due to
false positives. Once again, a large variance in the website
popularity distribution has a large impact on the outcome, i.e.
the traffic loss. Further, as can be seen in Figure 9, reducing
the false positive rate is only worthwhile if it can be dropped
below a certain value (in this particular example, around
0.2); when f is high enough, every website is mainly in the
infected or falsely infected state, and rarely in the uninfected
state.

D. Exploring the Parameter Space

Figure 10 shows how the expected infection exposure
and traffic loss change as the parameters σ and β vary



(a) Uniform website popularity (b) Power-law website popularity

Figure 5. Variation in client exposure to infection over time. Individual runs are light gray. Sim X indicates the results of the simulation. Here n = 250
to illustrate the effects of small sample sizes.

(a) Different runs with same parameters, ρ = 0.01, γ = 0.1. (b) Different runs with different parameters.

Figure 6. Variation of infection exposure in individual runs for power-law distribution of website popularity.

from a base setting of β = 10 and σ = 0.5. We can see
from the solid line at the critical value in Figure 10a that
changing the depreferencing parameter, σ, can only correct
for a small increase in β, up to β = 11. Beyond that, the
expected exposure increases, regardless of the setting of σ.
The value of σ only starts to have a large positive impact
if the detection delay, β, drops significantly. We see similar
results for the change in expected traffic loss, as shown in
Figure 10b. Once again, only the smallest increases in β
can be compensated for by increasing σ. However, lack of
compensation means a decrease in traffic loss, which is a
desirable outcome. We also see that it is easy to adjust σ
to ensure that the traffic loss does not increase for almost
every change in β.

It is clear that a faster response (reducing β) will reduce
the infection exposure rate, and any potential traffic loss can
easily be compensated for by changing σ. However, a faster
response may be less accurate and result in a higher false
positive rate, f . We explore this idea by again calculating
the infection exposure with base values β = 10 and σ = 0.5,
and then calculating the critical value σX needed to maintain
the same infection exposure rate for a variety of β′ values.
We then measure the change in traffic loss E[L(10, 0.5)]−
E[L(β′, σX)] for a variety of false positive rates. The results
can be see in Figure 11. Generally, a decrease in detection
delay, β, increases the traffic loss for a constant false positive
rate. If the false positive rate also goes up as β decreases,
the problem is even worse. However, if the false positive rate



(a) Uniform website popularity (b) Power-law website popularity

Figure 7. Steady state client exposure to infection for various detection delays, β, with σ = 0.

(a) Uniform website popularity (b) Power-law website popularity

Figure 8. Steady state client exposure to infection for various depreferencing adjustment values, σ, with β = 0.

can be kept sufficiently small (below 0.1 in this example),
then there is flexibility to decrease the delay without a major
increase in traffic loss.

VI. RELATED WORK

There are many approaches to combating web-based
malware, including the use of virtual machines or kernel
extensions to check for suspicious changes to the operating
system [2], [14]–[16], emulating browsers to detect mali-
cious JavaScript [17], [18], and detecting campaigns that
promote compromised sites to the top of search results [19].
No technique is completely effective at disrupting web-based
malware, according to a study of Google’s data over more
than four years [6]. In our view, one limiting factor is
the choice of conservative approaches that minimize false

positives at the expense of speedy detection. For example,
Provos et al. [2] choose to minimize false positives in a
system that allows explicit trade-offs between false and true
positives.

Depreferencing of search results is an example of a
graduated response, which is different from the binary, all-
or-nothing, response methods, such as blacklisting, that are
usually taken in cybersecurity. An early implementation of
graduated response was a Linux kernel extension called pH
[20], which responded to anomalous system call patterns by
delaying subsequent system calls in the offending process.
Other graduated responses operate by slowing down, or
throttling, outgoing requests [21], [22] in active networks
[23], Domain Name Service [24], Border Gateway Protocol
[25], and peer-to-peer networks [26]. However, this is the



(a) Uniform website popularity (b) Power-law website popularity

Figure 9. Steady state normalized traffic loss for various false positive rates. Each data point is the average of 1000 runs. The value used for the
depreferencing parameter was σ = 0.8.

(a) Change in expected infection exposure (b) Change in expected traffic loss

Figure 10. Changes in outcomes when parameters β′ and σ′ vary from a base of β = 10 and σ = 0.5. The solid lines correspond to the critical values,
σ′ = σX in a) and σ′ = σL in b).

first work we are aware of that uses a graduated response
outside of the time domain.

Several studies have focused on alternative intervention
strategies, which could potentially be generalized using our
depreferencing method. For example, Hofmeyr et al. mod-
eled responses available to ISPs [27]. Other researchers have
identified suitable intervention strategies based on empirical
research, which might also be amenable to depreferencing.
For example, Levchenko et al. [28] found that criminals
relied on just three payment processors to collect money
from victims, which led the authors to recommend targeting
the payment processors as a low-cost intervention. Similarly,
Liu et al. [29] empirically measured the effectiveness of

pressuring registrars to suspend spam-advertising domain
names. In a related intervention, Google has successfully
pushed ad-filled sites down the results by changes to its
search-ranking algorithm [4], suggesting that a similar effort
to depreference malware-infected sites is technically feasi-
ble.

VII. DISCUSSION

A general theme of this research is the emphasis on mod-
eling. Modeling is a cost-effective way to explore interven-
tion strategies, including investigating novel ideas, without
the expense of first implementing them. As our results show,
modeling can be particularly helpful for understanding long-



Figure 11. Change in expected traffic loss when expected infection
exposure is kept constant, i.e. σ′ = σX , the critical value. The base for
comparison is β = 10 and σ = 0.5. The dotted line corresponds to a value
of -0.1, i.e. an increase in traffic loss of 10%.

term trends in processes with high variance, where direct
experimentation can be misleading. Thoroughly testing the
interventions we explore in this paper would likely require
an unreasonable amount of time and money for any search
provider.

To the best of our knowledge, website depreferencing
has not previously been deployed to combat the drive-
by-download problem. A similar concept has been used
previously in computer security [20], [30]. Although we
believe that depreferencing is technically feasible, other
issues may arise with this type of response. For example,
a policy that explicitly tolerates false positives could trigger
accusations of bias against search engines.6 Another issue
is how depreferencing might be gamed. For example, there
could be an incentive to deliberately infect competitors’
websites, or cause them to appear infected, so their search
rankings are demoted. Such industrial sabotage may in fact
already happen. However, the scope for it could increase if
less precise, false-positive tolerant detection mechanisms are
used.

We have made several simplifying assumptions that we
believe are reasonable in the absence of more detailed
information. For example, we assume that website infection
and client infection probabilities are independent. In reality,
this may not be the case. One variety of drive-by-download
malware steals the login credentials of users who administer
websites, enabling the malware to spread to those websites.
Hence, when a client is infected, the probability of infecting
one or more websites increases, corresponding to a change in

6The European Union is already investigating accusations that Google
abused its power by preferring its own results over rivals. See http://www.
time.com/time/business/article/0,8599,2034138,00.html.

ρ. We have chosen not to model this form of malware spread,
because it has been observed only in a handful of outbreaks
(e.g., one Zeus variant in 2009 [31]). Another example is
the assumption that the distribution of website popularity
is time invariant, which is true in general, although the
popularity of individual websites can vary over time [32].
However, the popularity of infected websites may change
over time when attackers attempt to promote compromised
websites in search-engine rankings [19]. In future, if suf-
ficient information can be attained, it may be possible to
accurately model this aspect. We believe, however, that even
with more accurate information, the heavy tailed nature
of popularity will cause similar heavy tailed behavior in
infection exposure and traffic loss.

Another area of future work would be to focus on infec-
tions that spread in a general network environment where
a referral service (such as search) plays a key role. Similar
interventions could be applied when infections are spread
from website to website, rather than simply exposing a client
population. This could be a particularly good model for
controlling infections of malicious software in online social
networks.

In our analysis and modeling we disregard the effect
of false negatives, primarily because we assume that the
response methods we explore use the same detection mech-
anisms, subject to the same false negative rates. Usually, in
real detection systems, reducing the accuracy of the system
by increasing false positives usually leads to a decrease in
false negatives, a feature which gives rise to the traditional
ROC curve. We have insufficient data to model this effect,
but it suggests that the depreferencing mechanism could
have additional benefits beyond those shown by the model:
increasing tolerance of false positives could also improve
the rate of detection of compromised sites.

Our focus in this research has been to develop a plausible
model that allows us to assess the impact of different inter-
ventions on the spread of drive-by-download malware. Our
goal is to show that modeling can be a useful tool for search
providers to use when considering different interventions.
We do not have access to data that could enable us to
make quantitative predictions about interventions. We expect
search providers to have much more relevant data, especially
information on the distribution of website popularity, the
efficacy of infected website detection and the recovery times
for infection.

VIII. CONCLUSION

By building and analyzing plausible models, like the one
presented in this work, we are able to better understand
where search providers and web administrators should focus
their efforts for reducing infections, while avoiding the
large-scale (and potentially expensive) experiments needed
to test interventions in the field. When there is a high
variance in the underlying distributions, such as the website

http://www.time.com/time/business/article/0,8599,2034138,00.html
http://www.time.com/time/business/article/0,8599,2034138,00.html


popularity, corresponding high variance in outcomes can
make it difficult to assess the comparative effectiveness of
interventions in one-off field experiments.

We proposed and explored a novel intervention strategy,
called depreferencing, where a possibly infected website
is moved down in the search results, rather than outright
blacklisted. Depreferencing may be an attractive alternative
to blacklisting for search providers because it allows them
to use less precise detection methods with higher false
positive rates, potentially increasing the speed of response
to infection and reducing the cost of detection. These results
imply great difficulty in determining empirically whether
certain website interventions are effective, and it suggests
that theoretical models such as the one described in this
paper have an important role to play in improving web
security.
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