
The Phish Market Protocol:
Securely Sharing Attack Data Between Competitors

Tal Moran and Tyler Moore

Center for Research on Computation & Society, Harvard University
{talm},{tmoore}@seas.harvard.edu

Abstract. A key way in which banks mitigate the effects of phishing is to re-
move fraudulent websites or suspend abusive domain names. This ‘take-down’ is
often subcontracted to specialist firms. Prior work has shown that these take-down
companies refuse to share ‘feeds’ of phishing website URLs with each other, and
consequently, many phishing websites are not removed because the firm with the
take-down contract remains unaware of their existence. The take-down compa-
nies are reticent to exchange feeds, fearing that competitors with less compre-
hensive lists might ‘free-ride’ off their efforts by not investing resources to find
new websites, as well as use the feeds to poach clients. In this paper, we propose
the Phish Market protocol, which enables companies with less comprehensive
feeds to learn about websites impersonating their own clients that are held by
other firms. The protocol is designed so that the contributing firm is compensated
only for those websites affecting its competitor’s clients and only those previ-
ously unknown to the receiving firm. Crucially, the protocol does not reveal to
the contributing firm which URLs are needed by the receiver, as this is viewed as
sensitive information by take-down firms. Using complete lists of phishing URLs
obtained from two large take-down companies, our elliptic-curve-based imple-
mentation added a negligible average 5 second delay to securely share URLs.

1 Introduction

Phishing is the criminal activity of enticing people into visiting websites that imper-
sonate genuine bank1 websites, and to dupe them into revealing passwords and other
credentials to carry out fraudulent activities. One of the key countermeasures to phish-
ing is the prompt removal of the imitation bank websites. Removal may be achieved by
erasing the web pages from the hosting machine, or by contacting a registrar to suspend
a domain name from the DNS so the fraudulent host can no longer be resolved.

Although some banks deal with phishing website removal exclusively ‘in-house’,
most hire specialist ‘take-down’ companies to carry out the task. Take-down companies
– typically divisions of brand-protection firms or information security service providers
– perform two key services for banks. First, they are good at getting phishing websites
removed quickly, having developed relationships with ISPs and registrars across the
globe and deployed multi-lingual teams at 24x7 operations centers. Second, they collect
a more timely and comprehensive listing of phishing URLs than banks normally gather.

1 Although a wide range of companies have been subject to phishing attacks, the vast majority
are financial institutions; for simplicity, we use the term ‘banks’ for firms being attacked.

2 Tal Moran and Tyler Moore

Most take-down companies view their URL feeds as a key competitive advantage
over banks and other take-down providers. However, recent work has shown that the
feeds compiled by take-down companies suffer from large gaps in coverage that sig-
nificantly prolong the time taken to remove phishing websites. Moore and Clayton ex-
amined six months of aggregated URL feeds from many sources, including two major
take-down companies [13]. They found that up to 40% of the phishing websites im-
personating banks hired by take-down companies were known to others but not by the
company with the take-down contract. Another 29% of websites were discovered by
the responsible take-down company only after others had identified the sites. By mea-
suring the substantially longer lifetimes of these missed websites, Moore and Clayton
estimated that at least $330 million per year is being put at risk by the failure to share
proprietary feeds of URLs for just the two companies they studied.

But is sharing the answer, and, if so, then how should an effective sharing mech-
anism be designed? Moore and Clayton appealed to the security industry’s sense of
responsibility and argued that URL feeds should be shared freely between take-down
companies and banks, pointing to the precedent of sharing in the anti-virus industry.
However, there are some reasonable objections to a sharing free-for-all. First, com-
petition between take-down companies may drive investment into better techniques for
identifying new phishing websites faster, and mandated sharing might undermine the in-
centive to innovate. Unsurprisingly, most take-down companies would rather see banks
purchase the services of several take-down providers to overcome gaps in coverage.

In this paper, we describe the Phish Market protocol, which addresses the compet-
itive concerns of take-down companies so that widespread sharing can take place. To
bolster the incentive to share, our protocol enables sharing of URLs where the net con-
tributors are compensated without revealing the sensitive details of what is shared to
competitors. At a high level, the Phish Market protocol does the following:

1. shares only those URLs that the receiving party wants (i.e., the banks the receiving
party works for);

2. does not reveal to the providing party which URLs are given to the receiving party;
3. securely tallies the number of URLs given to the receiving party;
4. does not count URLs the receiving party already has.

Timing is critical when it comes to distributing URL feeds — the longer a phishing
website remains online, the more customer credentials may be at risk. While in theory
generic multiparty computation protocols can be used to implement this mechanism, in
practice they are very inefficient and would introduce significant delays in processing
the many thousands of phishing websites. In contrast, our custom protocol is extremely
efficient (and still provably secure).

To demonstrate the feasibility of our mechanism, we have implemented an elliptic-
curve-based version of the protocol in Java. Using the feeds from two take-down com-
panies during the first two weeks of April 2009, we tested protocol performance in a
real-world scenario. We found that our sharing protocol introduces an average delay of
5 seconds to the processing and transmission per phishing URL. In exchange for this
very short delay, information on new phishing websites is exchanged between take-
down companies so that the overall lifetime of phishing websites may be halved [13]
while crediting the contributing firm.

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 3

2 The Phish Market Protocol

We now describe the Phish Market protocol, where companies with more comprehen-
sive feeds of phishing URLs are compensated for sharing with those who learn most
from sharing. The protocol deals with a number of constraints in order to satisfy the
exchanging parties without relying on a trusted third party. While we formalize the se-
curity properties guaranteed in Section 2.2, it is helpful to first mention the requirements
affecting the protocol’s design. In particular, each company is only interested in a sub-
set of their competitors’ feeds, namely those URLs that affect their own customers. As
an added complexity, take-down companies keep their list of client banks secret from
competitors. Hence, we need a way to share only those URLs that the other party is in-
terested in, without revealing which URLs are being shared. Note that our mechanism
does not directly compensate contributors; instead, it tallies the total number of useful
URLs exchanged in a way that cannot be manipulated by either party.

An Optimal Ideal-World Protocol. We describe the task our protocol performs by first
explaining how it could be done if we used a trusted third party (TTP) — someone
who was entirely trusted by both the contributor (or Seller) and the receiver (or Buyer).
To share data in this ideal scenario, both the Buyer and the Seller would send the data
to the TTP; the Buyer’s data consists of the URLs she already knows and her list of
client banks, while the Seller’s data consists of the URLs he is attempting to sell and
their classification (i.e., which bank each URL is attempting to impersonate). The TTP
could then send the Buyer only those URLs that both impersonate her clients and that
she did not already know. The TTP would send the Seller the number of URLs sent
to the Buyer. This number would then be used to compute the compensation owed to
the Seller. Since the TTP only sends the new “interesting” URLs to the Buyer, she will
not learn anything about URLs she was not interested in (and would not have to pay
for them). On the other hand, the TTP sends the Seller only the number of URLs sold,
not the URLs themselves. Consequently, the Seller will not gain additional information
about the Buyer’s client list.

Our protocol is intended to provide this functionality, maintaining its privacy prop-
erties, but without requiring a third party. Using powerful results from theoretical cryp-
tography, it is known how to convert any task that can be performed with the aid of a
TTP to one that does not require third parties. However, these techniques are usually
inefficient. In our case, even the most efficient implementations of general techniques
(such as the Fairplay system [11]) would be orders of magnitude too slow for practical
use.

We give an efficient protocol for executing a single ‘transaction’ of the following
form: the Seller first sends a ‘tag’ to the Buyer. The tag can be, for example, the name of
the bank associated with the URL to be sold. The Buyer uses the tag to decide whether
or not she is interested in learning the corresponding URL. She also commits in advance
to the set of URLs she already knows. If the Buyer was interested in the tag and did not
already know the corresponding URL, the Seller receives a ‘payment’. Otherwise, the
Seller receives a ‘counterfeit payment’ (the Seller should not be able to tell whether or
not a payment is counterfeit — otherwise he would be able to tell whether or not the
Buyer was interested in the URL, and thus discover the Buyer’s client list).

4 Tal Moran and Tyler Moore

At the end of some previously agreed period (or number of transactions), the Buyer
reveals to the Seller how many ‘real’ payments were sent, and proves that this is indeed
the case (without revealing which of the payments were real). In practice, we envision
each pair of take-down companies executing the basic protocol in both directions: when
one of the companies acquires a new URL, it would execute the protocol as the Seller,
with the other company playing the Buyer. When the second company acquires a new
URL, it would execute an instance of the protocol in the other direction, with the first
party as Buyer and the second as Seller.

Note that, even in the using a trusted third party, some attacks are still possible. For
example, there is no guarantee that the URLs sold will be useful or correctly tagged. A
malicious Seller could send random strings instead of URLs, forcing the Buyer to ‘pay’
for garbage URLs (since they would not appear in the Buyer’s database). A malicious
Seller can also attack the Buyer’s privacy: if he uses the same tag for all the URLs in
a certain period, the Seller can tell whether or not the Buyer is interested in the tag by
whether or not a payment was made at the end of the period.

Since these attacks can be carried out in the ideal world, any protocol implementing
this type of exchange is also vulnerable. For the situations in which we anticipate our
protocol will be used, however, there are mitigating strategies. First, the Buyer can
evaluate the URLs she learns and set the price she is willing to pay for each URL based
on the quality of URLs she received in the past. If she determines that the Seller is
providing low-quality URLs, the Buyer can request a lower dollar price per URL or
refuse to do business with that Seller in the future. This would mitigate the “garbage
URL” attack. Defending against the privacy breach attack is harder — the payment will
always leak some information about which tags the Buyer is interested in. We can help
the Buyer detect this type of attack by compromising a little on the Seller’s privacy: if
we give the Buyer all the tags the Seller uses (without the corresponding URLs), the
Buyer can verify that no set of tags is overly represented.

Finally, in a two-party protocol, unlike a protocol that uses a trusted third party, each
side can decide to abort the protocol prematurely. This affects the security of our proto-
col if the Buyer decides to abort after learning a URL but before making the payment.
However, the same problem exists in many remote transactions (e.g., when purchasing
physical goods over the phone, the seller can refuse to send the goods after receiving
payment). The same legal frameworks can be used to handle a refusal to pay in this
case.

Below, we describe the protocol as well as the precise security guarantees we make.

2.1 Protocol overview
Payment Commitments. Before we describe the protocol itself, we must clarify what
we mean by ‘real’ and ‘counterfeit’ payments. Our protocol uses cryptographic commit-
ments as payment tokens. Loosely speaking, a commitment to a value x can be thought
of as a public-key encryption of x, for which only the Buyer knows the secret key; the
Seller can’t tell what x is from the commitment, but the Buyer can ‘open’ a commit-
ment and prove to the Seller that the commitment is to a specific value. In our protocol,
a ‘real’ payment is a cryptographic commitment to the number 1, while a ‘counterfeit’
payment is a commitment to the number 0.

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 5

The payment commitments used by the protocol have a special property that allows
them to be efficiently aggregated, even in encrypted form (they are homomorphic; see
App. B for a formal definition). Thus, the Seller can take the ‘payments’ from multiple
executions of the basic protocol and compute a commitment to the total payment (the
number of URLs actually ‘sold’).

The Buyer will eventually open the aggregated commitment. At this point, the Seller
will learn only the total number number of ‘real’ payments received (and not which
individual payments were real). This value can be used as the basis for a monetary
transaction between the two parties.

Protocol Construction. One of the more difficult challenges to solve efficiently is that
the Buyer should not have to pay for URLs she already knew, while simultaneously
protecting the privacy of the Buyer’s client list. The known techniques for general se-
cure computation of a function require an expensive public-key operation for each input
(or even each bit of the input). In our case, the input would have to include the set of
previously known URLs, which may be very large: A typical take-down company could
learn an excess of 10 000 URLs per month, making existing systems impractical.

To solve this problem, we let the Buyer perform the database search locally, after
learning the URL. If she discovers the URL in the database, she must then prove to the
Seller that the URL existed in the database before the start of the transaction. However,
this proof cannot use the URL itself, since that would reveal to the Seller that the Buyer
was interested in it (thus exposing one of the Buyer’s clients). The main idea behind the
protocol is to split the proof into two:

1. The first proof is a ‘proof of payment’. The payment in this case is a commitment to
the value 1; the proof of payment proves that the Buyer can open the commitment
she sent to the value 1.

2. The second proof is a ‘proof of previous knowledge’. This proof convinces the
Seller that the Buyer knew the URL before the start of the protocol.

The essence of the protocol is that we allow the Buyer to ‘fake’ a proof if she knows
a corresponding secret key. The protocol is set up so that the Buyer initially knows a
single secret key: she can fake the first proof or the second proof, but not both. Once the
Buyer learns the tag, she must make a choice: she can either learn the corresponding
URL, or learn the second secret key (but not both). Thus, if she chooses not to learn
the URL, the Buyer can send a counterfeit payment (a commitment to 0), and fake both
proofs. If she chooses to learn the URL and did not already know it, she is forced to fake
the second proof, and therefore cannot fake the first (so she must send a real payment).
The proofs we use are Zero-Knowledge (ZK) proofs: the Seller learns nothing from the
proof except the validity of its statement. This protects the security of the Buyer (the
Seller cannot tell whether or not the Buyer was interested in the URL or whether she
previously knew it).

Fig. 1 shows a graphical overview of the protocol. We split the second proof into
the boxes labeled ZK Proof #2 and Proof #3 in the figure. Before the protocol begins,
the Buyer sends the Seller a commitment to her set of previously known URLs (see
App. B for a more in-depth explanation of set commitments). ZK Proof #2 proves the
Buyer holds a commitment for the URL (this part can be faked using a secret key).

6 Tal Moran and Tyler Moore

Proof #3 proves the Buyer knew the commitment before the protocol began (this part
cannot be faked; however, if the Buyer faked ZK Proof #2 she can choose an arbitrary
commitment and prove she knew that). The reason for the split is that Proof #3 can
be performed very efficiently, while Proof #2 requires public-key type operations. The
numbers on the left and right-hand sides of the figure reference the corresponding lines
in the full protocol listing (on the left these are the lines in Prot. 1a, and on the right in
Protocols 1b and 2).

To simplify the presentation, the protocol in Fig. 1 omits two steps present in the
full protocol:

1. The Buyer must prove that the payment is valid (either a commitment to 0 or a
commitment to 1). Otherwise, if the Buyer fakes the first proof she could send a
commitment to a negative number instead of a zero commitment (in which case the
aggregate commitment would be opened to a lower value than the actual payment
due).

2. The use of a Merkle tree as a set commitment (Proof #3) is not completely secure
if the same Merkle tree is used for multiple transactions. This is because every
execution of the protocol requires the Buyer to reveal a path from some leaf in
the tree to the root. If the Seller sees the same leaf twice, he will learn that in at
least one of the transactions the Buyer was using a “fake”. To prevent this attack,
the Buyer must make sure the tree also contains “chaff” commitments. When a
fake commitment is needed, the Buyer uses one of the chaff commitments. The
Buyer makes sure to use each chaff commitment at most once (she can add chaff

commitments to the tree if they run out).

2.2 Security Properties

Unlike errors in most computer algorithms, protocols with faulty security may perform
flawlessly — often by definition a failure in security is one that is undetected. Thus, an
important part of the specification for any secure protocol is a formal definition of its
security properties and an analysis of the conditions under which they are guaranteed.

We make separate security guarantees for the Seller and for the Buyer in each trans-
action (execution of the basic protocol).
Buyer’s Security. The Buyer in our protocol has as input a set of tags in which she is
interested, T (e.g., the list of banks she has as clients) and a set of previously known
URLs, U. The security guarantee for the Buyer is that a malicious Seller does not learn
anything about T or U, beyond what he can deduce from the payment amount. This is
important because competitors naturally do not wish to reveal weaknesses (in terms of
gaps in URL coverage). On the other hand, the Seller does not want to reveal URLs to
the Buyer that the Buyer is unaware of without compensation. Finally, the Buyer does
not want to reveal its client list to the Seller.

More formally:

Theorem 1 (Buyer’s Security). For any two sets of inputs (T0,U0) and (T1,U1), such
that |U0| = |U1|, the Seller’s view of a protocol execution when the Buyer is given input
(T0,U0) is statistically indistinguishable from its view when the Buyer is given input
(T1,U1).

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 7

Fig. 1. Simplified Phish Market protocol overview.

Note that the Seller’s view of the protocol does not include the opening of the ag-
gregate payment: the Seller will obviously gain some information about T and U from
the payment amount — what the theorem implies is that this is all the Seller learns. The
intuitions behind the proof of this theorem appear in Appendix A.1
Seller’s Security. Essentially, the Seller needs to ensure that he is being justly com-
pensated for each URL that the Buyer learns from him. We define the security of the
Seller by formally comparing our protocol to an ‘ideal world’ in which there exists a
trusted third party (the ‘ideal Phish Market functionality’) that is completely trusted by
both parties. The protocol in the ideal world is much simpler than that in the real world,
hence its security guarantees are easier to understand intuitively. We prove our proto-
col’s security by showing that any attacks by the Buyer on the protocol in the real world
(without the trusted third party) can be performed in the ideal world as well. Hence,
our intuitions for the ideal world must hold for the real world too (this is the ideal/real
simulation paradigm).

Below, we describe the ideal-world protocol for a single transaction. In both the real
and the ideal world, the Buyer’s inputs consist of T , a set of tags in which the Buyer
is interested, and U, a set of previously known URLs. The Seller’s inputs consist of a
tag t and a URL u. The output of the protocol, on the Buyer’s side, is the tag t, and
optionally the URL u (if the Buyer was interested in it). On the Seller’s side, the output
is a payment commitment. We denote Compk∗ (x) a commitment to a value x.2

The protocol in the ideal world proceeds as follows:
1: The ideal functionality waits for the Buyer to send U and the Seller to send t, u.
2 For clarity, we’re ignoring the fact that the commitments are randomized — the commitment

function is actually Compk∗ (x, r), where r is the commitment’s randomizer).

8 Tal Moran and Tyler Moore

2: The functionality then sends t to the Buyer and waits for the Buyer to respond.
3: if The Buyer responds with 0 (she’s interested in t) then
4: The functionality sends u to the Buyer.
5: if u < U then
6: The functionality sends e = Compk∗ (1) to the Seller.
7: else // u ∈ U
8: The functionality sends e = Compk∗ (0) to the Seller.

(The functionality will allow a corrupt Buyer to send e = Compk∗ (1) in this
case as well)

9: else // The Buyer is not interested in t
10: The functionality sends e = Compk∗ (0) to the Seller.

We allow a corrupt party to abort the computation at any point, in which case the
other party will receive a special⊥ symbol from the ideal functionality (this corresponds
to a cheating party being detected). This ideal-world protocol is very similar to the
optimal ideal-world protocol described in the beginning of this section. However, in
this protocol the ideal party always sends the tag to the Buyer, and if the Buyer is
interested, always sends the URL to the Buyer (rather than only sending those URLs
that were both interesting and not previously known). This extra ‘information leakage’
(compared to the optimal protocol) is the result of allowing the Buyer to perform the
database lookup on her own.

Formally, the Seller’s security is defined as follows:

Theorem 2 (Seller’s Security). For any set of inputs to the Buyer and Seller, and for
every (probabilistic polynomial-time) adversary A that corrupts the Buyer in the real
world, there exists a simulator S who corrupts the Buyer in the ideal world such that
the outputs of both parties in the ideal world (the ideal-world Seller and S) are compu-
tationally indistinguishable from the outputs of both parties in the real world (the real-
world Seller andA), under the assumption that the underlying cryptographic primitives
are secure.

The intuitions behind the proof of this theorem appear in Appendix A.2

Side-Channel Attacks. As with every ‘provably secure’ system, the proof of security
only holds as long as certain assumptions are met. For example, it may be possible to
break the security of the protocol if the parties receive information outside the ‘legiti-
mate’ channels specified by the protocol (these unanticipated information channels are
called side channels).

The Phish-Market protocol is potentially vulnerable to a timing side-channel attack:
the Seller can measure the time it takes the Buyer to complete a transaction. If this time
depends on whether or not she was interested in the tag, or on whether or not she already
knew the URL, the Seller will gain information about the Buyer’s client list or coverage
rate. This particular attack can be foiled with relatively little effort by adding artificial
delays to the code to ensure all code paths on the Buyer’s side take the same time3.
Of course, as in the case of any secure protocol, the Phish-Market protocol may be
vulnerable to other side-channel attacks that we did not anticipate.

3 Note that the delays are not random noise — the delay on each code path must be computed
so that the total time taken by the Buyer does not depend on her input.

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 9

2.3 Formal Protocol Definition

We give a full protocol listing (in pseudocode) below. We describe separately the pseu-
docode for the Sellers’ and Buyers’ sides of the protocol. To make the protocol listing
easier to read, we divide it into a number of smaller subprotocols (called as subrou-
tines from the top-level protocol, Prot. 1). Prot. 1a specifies the top-level protocol run
by the Seller and Prot. 1b that run by the Buyer. Prot. 2 is called by the Buyer when
she is interested in the tag sent by the Seller (the Seller’s side of the protocol looks the
same whether or not the Buyer was interested). Prot. 3 is used to prove knowledge of
a given commitment value; this protocol has three “sides”: Prot. 3a is the Seller’s view
of the proof (verification), Prot. 3b is the Buyer’s view when performing a “real” proof,
and Prot. 3c is the Buyer’s view when performing a “fake” proof (using the protocol’s
trapdoor key).

Throughout the protocol, we denote a Pedersen commitment under public-key pk
to a value x and with randomizer r by Compk (x, r). To simplify the description, we
assume all the Pedersen commitments are over some group with prime order p (thus,
the inputs to the function Compk are both elements of Zp). We also assume the two
parties have previously agreed on a Pedersen public-key pk∗ that is binding to both
parties (i.e., neither party knows its secret key). See App. B for more details on the
cryptographic primitives used in the protocol, including a protocol that can be used to
generate Pedersen commitment keys with trapdoors (Prot. 5).

Protocol 1a Phish Market Protocol: Seller
Input: Commitment public-key, pk∗, such that Buyer does not know corresponding secret key.
Input: A URL, u, with tag, t
1: Perform Commitment Key Generation (e.g., Prot. 5a).

Denote the resulting commitment keys (pk0, pk1) and the secret k // Learning k will allow Buyer to compute both sk0 and
sk1

2: Perform Commitment Key Generation (e.g., Prot. 5a).
Denote the resulting commitment keys (pk2, pk3) (discard the secret).

3: Wait to receive Merkle root cU from Buyer // Root of a Merkle hash tree whose leaves are commitments to known URLs
4: Choose r ∈R Zp.

Send (t,Compk∗ (H(u), r)) to Buyer.
5: Perform OT protocol as sender (Buyer as receiver) with input strings s0 = (u, r) and s1 = k.
6: Wait to receive commitment e from Buyer. // ‘payment’ commitment

Verify that e ∈ C.
7: Wait to receive bit b from Buyer. // Payment proof based on binding of Compkb
8: Verify that e = Compk∗ (1) using Compkb for coin-flipping (Prot. 3a). // Proves that Buyer can either open e to 1 or knows

skb
9: Wait to receive bit b′ ∈ {2, 3} from Buyer. // Payment validity proof based on binding of Compkb′

10: Verify that e = Compk∗ (1) using Compkb′
for coin-flipping (Prot. 3a).

11: Verify that e = Compk∗ (0) using Compk5−b′
for coin-flipping (Prot. 3a). // Together with previous step proves that Buyer

can open e to either 0 or 1
12: Wait to receive commitment cu from Buyer // Buyer’s ‘previously known commitment’ to u

Verify that cu ∈ C.

13: Let ctest ←
Compk∗ (H(u),r)

cu
.

Verify that ctest = Compk∗ (0) using Compk1−b for coin-flipping (Prot. 3a) // Proves that either Buyer can open cu to H(u)
or that Buyer knows sk1−b

14: Verify proof that cu is in set committed to by cU (e.g. verify a Merkle path from cu to cU).

10 Tal Moran and Tyler Moore

Protocol 1b Phish Market Protocol: Buyer
Input: Commitment public-key, pk∗

Input: Set of commitments to known URLs: U =
{
cu1 = Compk∗ (H(u1), r1), . . . , cu|U | = Compk∗ (H(u|U |), r|U |)

}
Input: Set of wanted tags, T
1: Perform Commitment-Generation (Prot. 5b) with input bit b.

Denote the resulting commitment keys pk0, pk1 and skb.
2: Perform Commitment-Generation (Prot. 5b) with input bit b′ ∈ {2, 3}.

Denote the resulting commitment keys pk2, pk3 and skb′ .
3: Generate a ‘chaff’ commitment: cchaff ∈R C.

Let U′ ← U ∪ {cchaff}.
Send Comset(U′) to Seller (e.g. the root of a Merkle hash tree with elements of U′ as the leaves) // Commitment to set of
already known URLs

4: Wait to receive (t, cu′) from Seller // Tag and commitment to URL
5: if t ∈ T then // Buyer is interested in tag
6: Run Subprotocol 2
7: else // Buyer is not interested in tag
8: Perform OT protocol as receiver (Seller as sender) with choice bit 1.

Denote result sk0, sk1
9: Choose re ∈R Zp.

Send e = Compk∗ (0, re) to Seller // ‘Fake’ payment
10: Send b to Seller // Use Compkb for payment proof
11: ‘Prove’ that e = Compk∗ (1) using Compkb and skb (Prot. 3c).
12: Send b′ to Seller // Use Compkb′

for payment validity proof
13: ‘Prove’ that e = Compk∗ (1) using Compkb′

and skb′ (Prot. 3c).
14: Prove that e = Compk∗ (0) using Compk5−b′

and re (Prot. 3b).
15: Choose a ‘chaff’ commitment cu ∈ U

Send cu to Seller.
16: Let ctest ←

cu′
cu

.
‘Prove’ that ctest = Compk∗ (0) using Compk1−b and sk1−b (Prot. 3c).

17: Prove that cu is in set committed to by Comset(U) (e.g. show a Merkle path from cu to cU).

Protocol 2 Phish Market Subprotocol: Buyer is Interested in t
1: Perform OT protocol as receiver (Seller as sender) with choice bit 0.

Denote result u, r′

2: if cu′ = Compk∗ (H(u), r′) and ∃i : cui ∈ U and ui = u then // Buyer already knows u
3: Choose re ∈R Zp.

Send e = Compk∗ (0, re) to Seller // ‘Fake’ payment
4: Send b to Seller // Use Compkb for payment proof
5: ‘Prove’ that e = Compk∗ (1) using Compkb and skb (Prot. 3c).
6: Send b′ to Seller // Use Compkb′

for payment validity proof
7: ‘Prove’ that e = Compk∗ (1) using Compkb′

and skb′ (Prot. 3c).
8: Prove that e = Compk∗ (0) using Compk5−b′

and re (Prot. 3b).
9: Let cu = Compk∗ (H(u), r) such that cu ∈ U.

Send cu to Seller.
10: Let ctest ←

cu′
cu

= Compk∗ (0, r′ − r).
Prove that ctest = Compk∗ (0) using Compk1−b and r′ − r (Prot. 3b).

11: else // Buyer did not know u or Seller is cheating
12: Choose re ∈R Zp.

Send e = Compk∗ (1, re) to Seller // ‘Real’ payment
13: Send 1 − b to Seller // Use Compk1−b for payment proof
14: Prove that e = Compk∗ (1) using Compk1−b and re (Prot. 3b).
15: Send 5 − b′ to Seller // Use Compk5−b′

for payment validity proof
16: Prove that e = Compk∗ (1) using Compk5−b′

and re (Prot. 3b).
17: ‘Prove’ that e = Compk∗ (0) using Compkb′

and skb′ (Prot. 3c).
18: Send cchaff to Seller.
19: Let ctest ←

cu′
cchaff

.
‘Prove’ that ctest = Compk∗ (0) using Compkb and skb (Prot. 3c).

3 Performance evaluation

3.1 Theoretical efficiency

The advantage of this protocol over a generic secure-computation is its efficiency. We
measure efficiency in terms of both computation and communication overhead. In Sec-

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 11

Protocol 3a Proof of Committed Value: Seller
Input: Commitment c and claimed value x // Commitment uses public key pk∗

Input: Trapdoor Commitment public key pk // Used for coin flipping
1: Wait to receive cchal from Buyer.
2: Wait to receive (b, cb) from Buyer.

Verify that cb ∈ C.
3: Choose chal1 ∈R Zp

Send chal1 to Buyer.
4: Wait to receive (chal0, rchal) from Buyer.

Verify that cchal = Compk (chal0, rchal).
5: Wait to receive r′ from Buyer.

Let chal← chal0 + chal1.
Verify that cchal · cb = Compk∗ (chal · x + b, r′).

Protocol 3b Proof of Committed Value: Buyer
Input: Commitment c = Compk∗ (x, rx), rx and claimed value x // Commitment uses public key pk∗

Input: Trapdoor Commitment public key pk // Used for coin flipping
1: Choose chal0 ∈R Zp and rchal ∈R Zp.

Send Compk (chal0, rchal) to Seller.
2: Choose b ∈R Zp and rb ∈R Zp

Send (b,Compk∗ (b, rb)) to Seller
3: Wait to receive chal1 from Seller.
4: Send (chal0, rchal) to Seller.
5: Let chal← chal0 + chal1.

Compute r′ such that cchal · Compk∗ (b, rb) = Compk∗ (chal · x + b, r′). // r′ can be efficiently computed using rb and rx.
Send r′ to Seller.

tion 3.2, we describe our implementation of the protocol, which is instantiated using
Pedersen commitments and the Naor-Pinkas OT protocol. To get a theoretical estimate
of the protocol’s efficiency we count the most expensive operations — those that domi-
nate the protocol’s overall cost.

Exponentiations are the most expensive computation required, while the main com-
munications requirement is for parties to exchange several group elements and hashes.
For each URL transmitted, the Seller must compute 34 exponentiations, while transmit-
ting 10 group elements and 2 hashes to the Buyer. Meanwhile, the Buyer’s computa-
tion load is a bit lighter but the communications requirements are slightly higher. The
Buyer computes just 24 exponentiations, in addition to sending 39 group elements and
log |U | + 1 hashes to the Seller. The complete costs, broken down according to each
protocol component, are given in Table 2.

3.2 Implementation performance

We implemented an elliptic-curve (EC) based version of the protocol in Java, using the
Bouncy Castle Crypto API4 for basic EC operations. In our implementation the entire
Merkle hash-tree was kept entirely in memory (rather than on disk). This is feasible
even for moderately large URL lists (e.g., in one of the experiments the tree consisted
of about 18 000 URLs).

Our experiments used the NIST-recommended EC curve P-256 [15] as the group
over which both the Pedersen commitments and Naor-Pinkas OT were implemented,
and SHA-1 in place of a “random oracle”. Both sides of the protocol were simulated
on a single server with one dual-core 2.4GHz Intel Xeon processor and 2GB of mem-
ory (the main bottleneck in the protocol is CPU — one transaction requires less than

4 http://www.bouncycastle.org/

http://www.bouncycastle.org/

12 Tal Moran and Tyler Moore

Protocol 3c Fake Proof of Committed Value: Buyer
Input: Commitment c and claimed value x // Commitment uses public key pk∗

Input: Trapdoor Commitment public and secret keys pk, sk // Used to fake coin flipping
1: Choose r′chal ∈R Zp.

Let cchal ← Compk (0, r′chal).
Send cchal to Seller. // Using sk and r′chal, Buyer can open cchal to any value

2: Choose chal ∈R Zp, b ∈R Zp and r′ ∈R Zp.
Let ctarget ← Compk∗ (chal · x + b, r′).
Let cb ←

ctarget
cchal .

Send (b, cb) to Seller. // Buyer does not know how to open cb
3: Wait to receive chal1 from Seller.
4: Let chal0 ← chal − chal1.

Compute rchal s.t. cchal = Compk (chal0, rchal). // rchal can be efficiently computed using sk and r′chal
Send (chal0, rchal) to Seller.

5: Send r′ to Seller. // cb and b were computed at step 2 such that cchal · cb = Compk∗ (chal · x + b, r′)

comp. cost communication cost
protocol exponentiations group elements hashes

Seller
5a 2 2 0
OT 4 2 2
3a 24 4 0
1a 4 2 0

Seller total 34 10 2

Buyer
5b 2 2 0
OT 2 1 0
3b/3c 16 24 0
1a 4 2 log |U | + 1

Buyer total 24 39 log |U | + 1

1 4 7 10 13 16 19 22 25 28 31 34

Time in seconds

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Per-transaction processing time
Queue delay
Total delay

Fig. 2. Theoretical computation and communication costs of the Phish Market proto-
col (left); observed cumulative distribution function of the time required to share each
phishing URL (right).

3kB of communication — so running both sides on one server would only cause us to
overestimate the running time).

To test the protocol’s performance under real-world conditions, we used the URL
feeds from two large take-down companies during the first two weeks of April 2009. We
assigned one of the take-down companies to be the Seller, while making the other the
Buyer (we ran experiments using both assignments). For the two-week sample period,
one company found 8 582 unique URLs while the other discovered 17 721 URLs. The
first company was interested in obtaining phishing URLs for 59 banks, and the second
for 54 banks, according to the client lists shared with the authors.

The primary metric we use to measure the performance of our implementation is
the time required to process and transmit each phishing URL from the seller to the
buyer. The less time required for processing URLs, the closer the URL sharing is to
instantaneous. On average, each URL faced a very acceptable delay of 5.13 seconds to
complete the exchange (3.19 second median). Two main factors affect the total delay.
First is the processing time required to execute the protocol. This computational time
was very consistent, taking an average of 2.37 seconds, but never more than 4.02 sec-

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 13

onds. The other, less predictable, reason for delay happens whenever many phishing
URLs are discovered around the same time. Whenever a clump of URLs were reported,
some URLs had to wait for other URLs to be processed, leading to a longer delay.
While a multi-threaded implementation could minimize these ‘queue delays’ (by uti-
lizing more CPU cores), we chose to implement the protocol using a single thread to
demonstrate its feasibility even with modest hardware. Moreover, note that the protocol
implementation was optimized for clarity and generality of the source code rather than
speed. The average queue delay caused by waiting on other URLs to finish processing
was 2.76 seconds, while the longest delay was 34.6 seconds.

To get a better feel for how the processing time varies, Figure 2 (right) plots the
cumulative distribution functions for the time taken to process each URL, the time that
URL spent waiting in the Seller’s queue, and the total delay between the time the URL
entered the Seller’s queue and the time the Buyer received it. 48.4% of URLs were pro-
cessed in under 3 seconds, yet 9.7% took more than 10 seconds. Despite the variation,
no URL took more than 37 seconds to process. Given that phishing website removal
requires human intervention, a 37 second delay is negligible, and certainly much better
than the many days longer unknown sites currently take to be removed!

In addition to the total delay (red dash-dot line), Figure 2 (right) plots the two key
components of delay. The green dash line appears nearly vertical around 2 seconds,
suggesting that the per-URL processing time is very consistent. Meanwhile, the blue
solid line plots the queue delay, which accounts for the stretched tail of the overall
delay. Hence, if the queue delay were reduced by using multiple processors or threads,
the total delay might approach the consistently shorter processing time.

4 Related Work

Sharing Attack Data The academic work on phishing has been diverse, with a useful
starting point being Jakobsson and Myers’ book [10]. However, there has been only
limited examination of the take-down process employed by the banks and specialist
companies, even though it is the primary defense employed today. Moore and Clayton
estimated the number and lifetimes of phishing websites and demonstrated that timely
removal reduced user exposure [12]. Subsequently, they presented evidence (repeated
in Section 1) showing that take-down companies do not share data on phishing websites
with each other, and they calculated that website lifetimes might be halved if companies
shared their URL feeds. They appealed to the greater good in advocating that take-down
companies voluntarily exchange URL feeds with each other at no charge. By contrast,
this paper proposes a mechanism for sharing where net contributors are compensated
by net receivers of phishing URLs.

Information sharing has long been recognized as necessary for improving infor-
mation security. Gordon and Ford discussed early forms of sharing in the anti-virus
industry and contrasted it with sharing when disclosing vulnerabilities [9]. Some have
worried that firms might free-ride off the security expenditures of other firms by only
‘consuming’ shared security information (e.g., phishing feeds) and never providing any
data of their own [8], while others have argued that there can also be positive economic
incentives for sharing security information [6].

14 Tal Moran and Tyler Moore

Cryptographic Protocols The Phish Market protocol is an instance of secure multiparty
computation (MPC). MPC has been a major area of work in theoretical cryptography,
and general techniques are known for securely computing any functionality [17,7,3,1].

These techniques, however, are not practical for computing functions that have large
input size (e.g., an optimized implementation of Yao’s protocol for general two-party
computation can take seconds to evaluate a simple function with 32-bit inputs [11]).
In our case, one of the inputs to the function is a database of previously-known URLs
containing thousands of entries, making general techniques completely impractical.

For many specific functionalities, efficient protocols are known. We use some of
these as subroutines in our protocol. We make use of the Naor-Pinkas OT protocol [14],
which is itself a more efficient version of the Bellare-Micali OT protocol [2]. We also
use a generalization of the Chaum-Pedersen protocol for proving in zero-knowledge the
value of a commitment [5].

5 Concluding remarks

Sharing data between competing firms is hard. Yet security mechanisms are becoming
increasingly data-driven, from identifying malware hosts to blocking spam and shut-
ting down phishing websites. Consequently, sharing data is now essential as no single
defender has a complete view of attacker behavior.

In this paper, we have devised a mechanism to make it easier for take-down com-
panies to interact: by compensating net contributors of phishing URLs, we can bolster
the incentive to share while rewarding investment into better discovery techniques. As
a bonus, our protocol has the desirable property of being provably secure and allowing
parties to share data without relying on a trusted third party to mediate. Crucially, the
protocol is also efficient: our elliptic-curve-based implementation easily processed the
phishing URLs in a two-week sample from two take-down companies while introducing
average delays of 5 seconds before sharing.

Of course, to cut phishing website lifetimes in half and reduce the annual financial
exposure due to phishing by several hundred million dollars, we must still convince the
take-down companies that sharing is a good idea. We feel that the security guarantees
our protocol provides will make it easier for companies to at least explore the idea of
sharing data with their competitors. At present, many companies still cling to the view
that their feed is best. Fortunately, our protocol offers companies the chance to put their
claims to the test while avoiding the potential for public embarrassment if they happen
to find that sharing can indeed help.

References

1. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In STOC
’90, pages 503–513, New York, NY, USA, 1990. ACM.

2. M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. In CRYPTO
’89: Proceedings on Advances in cryptology, pages 547–557, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 15

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic
fault-tolerant distributed computations. In STOC ’88, pages 1–10, pub-ACM:adr, 1988. ACM
Press.

4. M. Blum. Coin flipping by telephone - A protocol for solving impossible problems. In
Proceedings of the 25th IEEE Computer Society International Conference, pages 133–137,
1982.

5. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92, pages
89–105, London, UK, 1993. Springer-Verlag.

6. E. Gal-Or and A. Ghose. The economic incentives for sharing security information. Infor-
mation Systems Research, 16(2):186–208, 2005.

7. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — A completeness
theorem for protocols with honest majority. In ACM, editor, STOC ’87, pages 218–229, pub-
ACM:adr, 1987. ACM Press.

8. L. Gordon, M. Loeb, and W. Lucyshyn. Sharing information on computer systems security:
An economic analysis. Journal of Accounting and Public Policy, 22(6):461–485, 2003.

9. S. Gordon and R. Ford. When worlds collide: information sharing for the security and anti-
virus communities, 1999. IBM research paper.

10. M. Jakobsson and S. Myers, editors. Phishing and Countermeasures: Understanding the
Increasing Problem of Electronic Identity Theft. Wiley, New York, 2006.

11. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation
system. In USENIX Security Symposium, pages 287–302, 2004.

12. T. Moore and R. Clayton. Examining the impact of website take-down on phishing. In
Anti-Phishing Working Group eCrime Researchers Summit (APWG eCrime), pages 1–13,
2007.

13. T. Moore and R. Clayton. The consequence of non-cooperation in the fight against phishing.
In Anti-Phishing Working Group eCrime Researchers Summit (APWG eCrime), pages 1–14,
2008.

14. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA ’01, pages 448–457,
Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics.

15. NIST. Digital signature standard (DSS). FIPS 186-2, January 2000. Available at URL:
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.

pdf.
16. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

CRYPTO ’91, volume 576, pages 129–140, 1991.
17. A. C.-C. Yao. How to generate and exchange secrets. In FOCS ’96, pages 162–167, Los

Alamitos, CA, USA, 1986. IEEE Computer Society.

A Security Proof Sketches

A.1 Proof Sketch for Theorem 1

The Seller’s view of the protocol consists of the its input, its random coins and the mes-
sages received from the Buyer (the view explicitly excludes the total payment received
at the end of a period). Going over the messages received from the Buyer, we verify
that they are statistically independent of the Buyer’s inputs:

1. The public keys generated by the commitment key-generation protocol are statis-
tically indistinguishable. In particular, the Buyer’s input to these protocols is inde-
pendent of the Seller’s view.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

16 Tal Moran and Tyler Moore

2. The commitments cU , e and cu are statistically hiding, hence do not depend on the
messages committed or on each other. The randomness used in the commitments is
independent of the Buyer’s inputs.

3. The bits b′ and b are independently and uniformly distributed (note that the XOR
of these bits with the Buyer’s input to the commitment key-generation protocols do
depend on the Buyer’s input, however no additional information about these bits is
sent).

4. The OT protocol (executed in step 5 or Protocol 1a) is statistically hiding.
5. Protocol 3 is a statistical zero-knowledge proof of knowledge (assuming we use

the Fiat-Shamir heuristic to make it non-interactive), hence the view of the Seller
is statistically independent of the Buyer’s inputs to this protocol.

6. The proof of membership in step 14 consists of a random set of hashes (the path in
the Merkle tree) which are statistically hiding (assuming we use a random oracle).
The length of the path does reveal information about the size of the set U (but that
is allowed by the security definition).

Note that this proof assumes the protocol is only run once. In practice, it will be
run multiple times without recomputing all the leaves of the Merkle hash tree. Hence,
for security to hold the Seller should not be allowed to resend a URL it previously sent
(in this case, cu will be a new, independent value in each of the Seller’s views). Even if
this is done, however, reusing the Merkle tree can cause a small loss of privacy for the
Buyer — in particular, the seller may gain some information about the number of leaves
added to the tree between invocations of the protocol. We leave the detailed analysis of
this case to the full version of the paper.

A.2 Proof Sketch for Theorem 2

The proof of the theorem is by constructing the simulator S and showing that its output
is indistinguishable from that of the real-world adversary A. We follow the standard
scheme for proofs in the ideal/real paradigm: S simulates a real-world execution using
A as a black box, simulating the random oracle H and the honest Seller, and outputting
anythingA outputs.
S simulates the Seller by simulating Protocol 1a exactly as an honest Seller would,

with the following modifications:

1. IfA aborts at any time, or if any of the Seller’s verifications fail, S sends the abort
command to the ideal functionality.

2. S must send a set U to the ideal functionality before it can receive the tag t (which
it needs to simulate step 4 in Protocol 1a). To extract U, Smakes use of the random
oracle. Since S is simulating the oracle for A, it can record any queries made to
the oracle. S runs the simulation until A sends the commitment cU (in step 3 of
Protocol 1a). S then lets U be the set of all queries A made to H up to that point.
Since the commitment cU is to the a set of the form Compk∗ (H(x), r), if A did not
query H about a particular string before sending cU , it will not be able to open the
commitment correctly later. Note that the set of queries to H may be larger than
the set committed to by cU ; however, this will not hurt the simulation since S can
always choose to send a ‘real’ payment (e = Compk∗ (1, r)) even when u ∈ U.

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 17

3. In step 4, S chooses a random value h for H(u) (it doesn’t know u yet). Since S is
simulating the random oracle, it will later be able to claim the preimage of h is u,
for any u.

4. To run the OT protocol in step 5, S must decide on an input u to the OT protocol.
Here we use the fact that the OT protocol also defines security for the Sender in
the ideal/real simulation paradigm. Thus, there exists a simulator SOT that runs in
a world with an ideal OT functionality and can simulate a corrupt Chooser. S runs
SOT and simulates the ideal OT functionality with A as the Chooser. SOT must
extract the Chooser’s choice bit and send it to the ideal OT functionality in order
to correctly simulate the Chooser, hence S will learn this bit. S sends this choice
bit as the Buyer’s response to the ideal Phish Market functionality. If the choice bit
was 0, S receives u from the ideal functionality and can run the OT protocol with
the correct u. If the choice bit was 1, it uses a random value for u, but the security
of the OT protocol ensures that the Buyer will not be able to distinguish between a
random value and the correct u.

5. In order to learn the randomness r used in the commitment e, S makes use of the
fact that Protocol 3 is a proof of knowledge (when the commitment used for coin
flipping is binding). Thus, there exists a knowledge extractor that, given access to a
Buyer who can prove that a commitment e can be opened to a value x, can output
the opening of the commitment e. Note that of the two proofs in steps 10 and 11, at
least one must use a commitment that is binding for the Buyer (due to the properties
of the commitment key generation protocol). Hence, the knowledge extractor will
be able to run in at least one of the instances, allowing S to learn r (and whether e
is a commitment to 0 or to 1).

6. If S learned u and u ∈ U but e is a commitment to 1, S instructs the ideal function-
ality to send the Seller a commitment to 1 rather than to 0.

To complete the proof, we must show that the output of S, together with the output
of the ideal Seller, is indistinguishable from the output of A together with the output
of the real-world Seller (in a real execution of the protocol). The main problem that
remains is showing that when S chose to learn u from the ideal functionality and u <
U, then the commitment e received from the Buyer is a commitment to 1 (otherwise
the output of the ideal-world Seller will not match the output of the simulated Seller).
This must be the case because at least one of the proofs in steps 8 and 13 must use a
commitment that is binding to the Buyer (since it chose to receive u rather than k in the
OT protocol, hence either Compkb

or Compk1−b
is binding). If the proof in step 8 uses the

binding commitment, the existence of the knowledge extractor guarantees S can open
e to a value of 1. If the proof in step 13 uses the binding commitment, S can use the
knowledge extractor to extract an opening of cu to H(u). Since u < U, H(u) was not the
response to a query sent to H before the Buyer computed cU . However, the probability
that the Buyer guessed H(u) without querying the oracle is negligible. Hence, either we
can use the buyer to open cu in two different ways, or we can use the Buyer to break
the set commitment scheme (S can rewind the Buyer and set H(u) to a different value
– then the buyer must either give a new different value for cu or a different opening of
cu).

18 Tal Moran and Tyler Moore

B Cryptographic Building Blocks

The Phish Market protocol requires several cryptographic primitives with specific prop-
erties. In this section we describe them in more detail:

Commitments and Trapdoor Commitments. A commitment scheme is a two-party func-
tionality; one party is called the committer and the other is the receiver. A commitment
under public key pk is a function Compk :M×R 7→ C, mapping a message m ∈ M and
randomizer r ∈ R to C (to simplify the presentation, below we will useM = R = Zp,
the group of integers mod p for some prime p; this is not a requirement of the protocol,
however). The committer opens the commitment by revealing both the message and the
randomizer used to create it. Commitments must satisfy two security properties:

– Hiding. For any public key pk and any two messages x, y, Compk (x, r) is indistin-
guishable from Compk (y, r) when r is chosen uniformly at random. In our protocol,
we use commitments that are statistically hiding: the indistinguishability holds even
for a computationally unbounded adversary.

– Binding. For any computationally bounded adversary A without knowledge of the
secret key, the probability that A outputs (x, r) and (y, r′) such that Compk (x, r) =

Compk (y, r′) is negligible (more formally, such an adversary can be used to effi-
ciently extract the secret key corresponding to pk).

For our protocol, we require a special type of commitment scheme, a Trapdoor Homo-
morphic Commitment that has two additional properties:

– Homomorphic. The message space M must be a group. Given a public key pk
and any two commitments c1 = Compk (x, r1), c2 = Compk (y, r2), it is possible to
compute c3 = Compk (x + y, r3). Moreover, a party that knows x, r1, y and r2 can
compute r3. To simplify, we will assume the range of the commitment, C, is a group,
and that Compk (x, r1) · Compk (y, r2) = Compk (x + y, r1 + r2).

– Trapdoor. For any public key pk, any commitment c = Compk (x, r) and any mes-
sage y, it is possible to efficiently compute r′ such that c = Compk (y, r′) using sk, x
and r. Moreover, when r is chosen uniformly at random, r′ is statistically close to
uniform.

We also require the commitment scheme to have a special key-generation protocol that
generates a pair of public-keys (pk0, pk1), such that the committer provably learns only
one of the corresponding secret keys, but the receiver gains no information about which
of the keys is known to the committer. The receiver should learn an ‘enabling key’ that,
when given to the committer, allows the committer to recover both secret keys.

In this paper, we assume the commitments used are Pedersen Commitments [16]. A
full description (including a protocol for key-generation) appears in App. B.1.

1-out-of-2 String Oblivious Transfer (OT). OT is a two-party functionality, with a
sender and a receiver. The sender’s inputs consist of two strings s0 and s1, while the
receiver’s input is a single bit, c. An OT protocol ensures that the receiver gets sc but no
information about s1−c, while the sender gets no information about c. In this paper we
assume we are using the Naor-Pinkas OT scheme.

The Phish Market Protocol: Securely Sharing Attack Data Between Competitors 19

Random Oracle. The random oracle is a hash function H that is modeled in the security
analysis as a random function. In practice, H would be an explicit cryptographic hash
function such as SHA-1. Although we can replace some uses of the Random Oracle
with weaker cryptographic functionalities (such as collision-resistant hash functions),
to simplify the description and analysis of the protocol we do not make this separation
here.

Set Commitment. This is a commitment scheme that allows a committer to commit to
a set of strings (rather than a single message), and later prove that a string belongs to
the set without revealing anything about the other strings in the set. In this paper we
assume we are using a Merkle hash tree.

B.1 Pedersen Commitments

Pedersen commitments are based on the hardness of discrete log in a group G of prime
order p. The commitment public key is a pair of generators g, h ∈ G, and the corre-
sponding secret key is logg h. We will assume g is fixed in advance and common to all
the public keys. To commit to a message m ∈ Z|G|, the committer chooses r ∈R Zp and
sends Comg,h(m, r) = gmhr. This commitment is perfectly hiding (for any message m,
Comg,h(m, r) is uniformly distributed in G when r is chosen randomly). It is also com-
putationally binding: given m , m′ and r, r′ such that c = gmhr = gm′hr′ , it is easy to
compute logg h ≡ m−m′

r′−r (mod p).
Computing (or verifying) a Pedersen commitment requires two exponentiations in

the group G. Committing and opening a commitment (to a previously known value)
require the committer to send a single group element.

Binding Key Generation. Since the order of the group G is prime, every element of G
(except the identity) is a generator of the group. To choose a public-key that is binding
for both parties, the parties can use a variation of Blum’s ‘coin-flipping over the tele-
phone’ [4] to choose a random group element. This is described in Protocol 4 (note that
we use the random oracle H as a standard commitment in this protocol).

Protocol 4a Pedersen Binding Commitment Key Generation: Seller
Input: (Common) Group G of prime order p in which DL is hard
Input: (Common) A generator g of G
1: Choose a random k ∈R Zp.
2: Send h← H(gk) to Buyer.
3: Wait to receive d from Buyer.
4: Send e← gk to the Buyer.
5: Output pk ← d · e // If Buyer knows logg pk she must also know k

Special Key Generation. Protocol 5 gives the required special key-generation protocol
for Pedersen commitments (this protocol is based on the idea from the Bellare-Micali
[2] OT scheme). An execution of the key generation protocol requires each party to
perform a single exponentiation in the group G and send a single group element. Note
that these can be performed ahead of time (since they do not rely on information from
the other party).

20 Tal Moran and Tyler Moore

Protocol 4b Pedersen Binding Commitment Key Generation: Buyer
Input: (Common) Group G of prime order p in which DL is hard
Input: (Common) A generator g of G
1: Choose a random k′ ∈R Zp.
2: Wait to receive h from Seller.
3: Send d ← gk′ to the Seller
4: Wait to receive e from Seller.

Verify that h = H(e).
5: Output pk ← d · e // If Seller knows logg pk he must also know k′

Protocol 5a Pedersen Commitment Special Key Generation: Seller
Input: (Common) Group G of prime order p in which DL is hard
Input: (Common) A generator g of G
1: Choose a random k ∈R Zp.
2: Send gk to Buyer.
3: Wait to receive pk0 from Buyer.

4: Let pk1 ←
gk

pk0
// Ensures Buyer knows either sk0 or sk1 but not both.

5: Output (pk0, pk1) and k.

Protocol 5b Pedersen Commitment Special Key Generation: Buyer
Input: (Common) Group G of prime order p in which DL is hard
Input: (Common) A generator g of G
1: Wait to receive h ∈ G from Seller.
2: Choose random b ∈R {0, 1}
3: Choose random skb ∈R Zp

4: Compute pkb ← gskb and pk1−b ←
h

pkb
.

5: Send pk0 to Seller.
6: Output (pk0, pk1) and (b, skb)

	The Phish Market Protocol: Securely Sharing Attack Data Between Competitors
	Tal Moran and Tyler Moore

