New Strategies for Revocation in Ad-Hoc Networks

Tyler Moore, Jolyon Clulow, Shishir Nagaraja and Ross Anderson

University of Cambridge Computer Laboratory

Fourth European Workshop on Security and Privacy in Ad-Hoc and Sensor Networks (ESAS) University of Cambridge, England

Outline

Dealing with bad nodes: challenges and existing mechanisms

3 New decision strategy: suicide

Outline

1 Dealing with bad nodes: challenges and existing mechanisms

Ground rules for key management in sensor networks

- Sensor networks are comprised of low-cost, wireless devices
- Computational efficiency is paramount, so symmetric cryptography is preferred (possibly supported by very limited asymmetric cryptography)
- Traditional key-exchange protocols are too expensive, so keys are often pre-distributed
- Sensors are cheap, so no tamper-proof hardware, and are deployed in unguarded areas
 - Threat model assumes a few nodes may be compromised to become active attackers
- Revoking the keys assigned to compromised nodes is essential

Threat model

- Attacker may actively compromise small minority of nodes
- Two threat models used in the literature
 - Conservative: global, active adversary upon deployment
 - Relaxed: adversary monitors at most a small fraction of communications during initialization
 - Model chosen affects the number of secrets that must be pre-loaded onto nodes
- Sybil attacks
 - In a Sybil attack, one malicious node pretends to be many distinct nodes
 - Node replication is a Sybil variant where copies of a subverted node are introduced
 - Sybil attacks can disrupt routing, voting, data aggregation...
 - We focus on networks where Sybil attacks can be contained

< 口 > < 同 >

UNIVERSITY OF CAMBRIDGE

Threat model

- Attacker may actively compromise small minority of nodes
- Two threat models used in the literature
 - Conservative: global, active adversary upon deployment
 - Relaxed: adversary monitors at most a small fraction of communications during initialization
 - Model chosen affects the number of secrets that must be pre-loaded onto nodes
- Sybil attacks
 - In a Sybil attack, one malicious node pretends to be many distinct nodes
 - Node replication is a Sybil variant where copies of a subverted node are introduced
 - Sybil attacks can disrupt routing, voting, data aggregation...
 - We focus on networks where Sybil attacks can be contained

The problem of revocation in ad-hoc networks

- Three stages are required to revoke a bad node
 - Detecting misbehavior
 - Deciding when to revoke a node
 - Implementing punishment
- Why are decision mechanisms hard to design properly?
 - Detection mechanisms rarely yield non-repudiable evidence (because signing every message is impractical)
 - More commonly, evidence is non-repudiable to a single party (e.g., MAC using pairwise key)
 - Repudiable evidence enables false accusations
 - Untrusted nodes are often better positioned to detect misbehavior than central authorities

The problem of revocation in ad-hoc networks

- Three stages are required to revoke a bad node
 - Detecting misbehavior
 - Deciding when to revoke a node
 - Implementing punishment
- Why are decision mechanisms hard to design properly?
 - Detection mechanisms rarely yield non-repudiable evidence (because signing every message is impractical)
 - More commonly, evidence is non-repudiable to a single party (e.g., MAC using pairwise key)
 - Repudiable evidence enables false accusations
 - Untrusted nodes are often better positioned to detect misbehavior than central authorities

Existing decision mechanisms for sensor networks

- Centralized revocation scheme (Eschenauer and Gligor 2003)
 - Base station determines which keys are tied to a compromised node and instructs all nodes holding keys to delete them
 - Impractical unless a base station can detect misbehavior
- Distributed revocation schemes (Chan et al. 2003, 2005)
 - Without a base station, no device has the authority to decide when a node should be removed or the keys to communicate a revocation instruction securely
 - Since detecting nodes cannot be trusted, then one logical response is to let devices vote for each other's removal

Distributed revocation mechanism (Chan et al. 2005)

Stored Key Material

- $\begin{aligned} A: \text{share}(\text{rev}_B), h^2(\text{rev}_B), \text{share}(\text{rev}_C), h^2(\text{rev}_C), \\ \text{share}(\text{rev}_C), h^2(\text{rev}_C), \text{share}(\text{rev}_D), h^2(\text{rev}_D) \end{aligned}$
- B : share(rev_A), h^2 (rev_A), share(rev_E), h^2 (rev_E)
- C : share(rev_A), h^2 (rev_A), share(rev_D), h^2 (rev_D)
- D : share(rev_A), h^2 (rev_A), share(rev_C), h^2 (rev_C)
- E : share(rev_A), h^2 (rev_A), share(rev_B), h^2 (rev_B)
- Each node B that shares a pairwise key with A is assigned to the set of A's voting members, V_A
- Each node A is assigned a revocation secret rev_A
- rev_A is divided into secret shares, given to all $B \in V_A$ and authenticator $h^2(rev_A)$
- Nodes vote against A by revealing their share
- If enough shares are revealed, rev_A is reconstructed and h(rev_A) broadcast

Limitations to Chan's blackballing scheme

- No path keys are revoked
 - In Chan's distributed revocation scheme, only nodes that can verify votes are allowed to vote
 - Only pre-assigned keys are revoked; no path keys established with revoked nodes are removed
 - Can be remedied by equipping nodes with authentication values for revocation secrets of all nodes
- Nodes cannot move around after deployment, otherwise a threshold of colluding bad nodes could roam around ejecting devices at will
- Fairly stringent computational, storage and communication requirements
- Delayed response for voting threshold to be reached

Outline

Dealing with bad nodes: challenges and existing mechanisms

2 New decision strategy: reelection

lew decision strategy: suicide

Reelection

- Chan's blackballing scheme utilizes negative votes nodes condemn misbehavior
- We propose a system based on positive votes good nodes periodically reelect each other to the club
- We discuss two variants of the reelection strategy
 - Reelection for semi-capable devices
 - Lightweight reelection using buddy lists

Reelection for semi-capable devices

- Logical complement to secret-sharing-based blackballing
 - Each node A must periodically present a network access token $access_{A,i}$ to remain on the network during time period $i \in \{1, \ldots, T\}$, created using a hash chain
 - $\bullet\,$ Each token $\mathrm{access}_{A,i}$ is divided into secret shares given to A 's voting members
 - A's voting members cast votes by revealing their shares each period to reconstruct $access_{A,i}$
 - $access_{A,0}$ is distributed to each voting member to authenticate $access_{A,i}$
- Properties of secret-sharing-based reelection
 - To vote against A, a node must simply delete its shares
 - Votes are honored even if the node is later compromised
 - Storage costs are improved over blackballing because voting members do not need to prove to each other that a vote is valid
 UNIVERSITY OF CAMBRIDGE

Reelection for semi-capable devices

- Logical complement to secret-sharing-based blackballing
 - Each node A must periodically present a network access token $access_{A,i}$ to remain on the network during time period $i \in \{1, \ldots, T\}$, created using a hash chain
 - Each token $\mathrm{access}_{A,i}$ is divided into secret shares given to A 's voting members
 - A's voting members cast votes by revealing their shares each period to reconstruct $access_{A,i}$
 - access_{A,0} is distributed to each voting member to authenticate access_{A,i}
- Properties of secret-sharing-based reelection
 - To vote against A, a node must simply delete its shares
 - Votes are honored even if the node is later compromised
 - Storage costs are improved over blackballing because voting members do not need to prove to each other that a vote is valid
 UNIVERSITY OF CAMBRIDGE

Lightweight reelection using buddy lists

- Threshold secret-sharing-based blackballing and reelection remain relatively expensive: from reconstructing secrets to pre-assigning, swapping and storing shares
- Alternatively, nodes could transmit a buddy list of approved neighbors
 - Devices can cross-reference lists to check whether enough nodes have also approved their buddies
 - Buddy lists are approved using Guy-Fawkes style hash chains: nodes distribute key authentication values to neighbors upon deployment
- Advantages of buddy lists
 - No pre-assigned storage is required
 - Naturally supports diverse strategies towards risk

Lightweight reelection using buddy lists

- Threshold secret-sharing-based blackballing and reelection remain relatively expensive: from reconstructing secrets to pre-assigning, swapping and storing shares
- Alternatively, nodes could transmit a buddy list of approved neighbors
 - Devices can cross-reference lists to check whether enough nodes have also approved their buddies
 - Buddy lists are approved using Guy-Fawkes style hash chains: nodes distribute key authentication values to neighbors upon deployment
- Advantages of buddy lists
 - No pre-assigned storage is required
 - Naturally supports diverse strategies towards risk

Outline

Dealing with bad nodes: challenges and existing mechanisms

2 New decision strategy: reelection

Suicide

- Any voting-based decision mechanism is necessarily complex and slow since many actors are involved
- Decisions are much simpler if a single device can decide
- Unfortunately, false accusations can undermine unilateral decisions
- Our solution: make punishment expensive
- Upon detecting misbehavior, a device commits suicide by broadcasting an instruction to remove the bad node and itself

Implementing suicide

- Suicide using a central authority
 - Universally trusted base station can be leveraged to transmit authenticated suicide notes
 - If A detects M misbehaving, it sends suicide_{A,M} to a base station, which verifies the message and sends out authenticated messages to other nodes
 - Notably, the decision remains distributed
- Distributed suicide using signatures
 - A broadcasts a signed suicide note suicide_{A,M}
 - $\bullet\,$ Other nodes verify the signature and delete keys shared with A,M
 - Can be implemented using public key crypto or one-time signatures

Implementing suicide

- Suicide using a central authority
 - Universally trusted base station can be leveraged to transmit authenticated suicide notes
 - If A detects M misbehaving, it sends suicide_{A,M} to a base station, which verifies the message and sends out authenticated messages to other nodes
 - Notably, the decision remains distributed
- Distributed suicide using signatures
 - A broadcasts a signed suicide note suicide_{A,M}
 - $\bullet\,$ Other nodes verify the signature and delete keys shared with A,M
 - Can be implemented using public key crypto or one-time signatures

Challenges to distributed suicide

Flypaper attacks

- Bad node presents widely observable misbehavior to attract simultaneous suicides
- Centralized scheme: base station can choose which offer to accept
- Decentralized scheme: (i) randomized back-off before sending offer and (ii) as tie-breaker, accept the offer with earliest timestamp
- Trolling attacks
 - Bad node presents itself in several locations, either re-using identities (node replication) or presenting different ones (Sybil)
 - Need detection mechanisms for Sybil and node replication attacks
 - Multiple-offer resolution can identify reused identities if network is connected

Challenges to distributed suicide

Flypaper attacks

- Bad node presents widely observable misbehavior to attract simultaneous suicides
- Centralized scheme: base station can choose which offer to accept
- Decentralized scheme: (i) randomized back-off before sending offer and (ii) as tie-breaker, accept the offer with earliest timestamp
- Trolling attacks
 - Bad node presents itself in several locations, either re-using identities (node replication) or presenting different ones (Sybil)
 - Need detection mechanisms for Sybil and node replication attacks
 - Multiple-offer resolution can identify reused identities if network is connected

How does suicide compare to voting-based alternatives?

- Much lower storage and communication costs, though signing operation for distributed suicide is computationally expensive
- Decisions are reached more quickly
- No restrictions on node mobility or 'honest majority' assumption
- Requires good nodes to value network's welfare over individual utility
- Enables precision DoS attack: can remove strategic nodes
- Suicide lets an attacker remove one good node for the price of one bad node; in blackballing, a colluding majority can remove good nodes at will

Network performance under multiple suicide offers

Tyler Moore New Strategies for Revocation in Ad-Hoc Networks

Network performance under multiple suicide offers (ctd.)

Tyler Moore New Strategies for Revocation in Ad-Hoc Networks

Conclusions

- A major challenge for ad-hoc networks is how to remove nodes that are observed to be behaving badly
- Existing threshold voting proposals are computationally expensive, operationally restrictive, and susceptible to manipulation
- We switched from voting against bad nodes to affirming good ones, improving storage costs and enabling a lightweight 'buddy list' protocol
- Suicide is fast, cheap, scalable and handles node mobility
- For more: http://www.cl.cam.ac.uk/~twm29/

