
4

Dates

R provides several options for dealing with date and date/time data. The built-
in as.Date function handles dates (without times); the contributed package
chron handles dates and times, but does not control for time zones; and the
POSIXct and POSIXlt classes allow for dates and times with control for time
zones. The general rule for date/time data in R is to use the simplest technique
possible. Thus, for date only data, as.Date will usually be the best choice.
If you need to handle dates and times, without time-zone information, the
chron package is a good choice; the POSIX classes are especially useful when
time-zone manipulation is important. Also, don’t overlook the various “as.”
functions (like as.Date and as.POSIXlt) for converting among the different
date types when necessary.

Except for the POSIXlt class, dates are stored internally as the number of
days or seconds from some reference date. Thus, dates in R will generally have
a numeric mode, and the class function can be used to find the way they are
actually being stored. The POSIXlt class stores date/time values as a list of
components (hour, min, sec, mon, etc.) making it easy to extract these parts.

To get the current date, the Sys.Date function will return a Date object
which can be converted to a different class if necessary.

The following sections will describe the different types of date values in
more detail.

4.1 as.Date

The as.Date function allows a variety of input formats through the format=
argument. The default format is a four-digit year, followed by a month, then
a day, separated by either dashes or slashes. Some examples of dates which
as.Date will accept by default are as follows:

> as.Date(’1915-6-16’)
[1] "1915-06-16"

58 4 Dates

> as.Date(’1990/02/17’)
[1] "1990-02-17"

Code Value

%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (abbreviated)
%B Month (full name)
%y Year (2 digit)
%Y Year (4 digit)

Table 4.1. Format codes for dates

If your input dates are not in the standard format, a format string can be
composed using the elements shown in Table 4.1. The following examples
show some ways that this can be used:

> as.Date(’1/15/2001’,format=’%m/%d/%Y’)
[1] "2001-01-15"
> as.Date(’April 26, 2001’,format=’%B %d, %Y’)
[1] "2001-04-26"
> as.Date(’22JUN01’,format=’%d%b%y’)
[1] "2001-06-22"

Internally, Date objects are stored as the number of days since January 1,
1970, using negative numbers for earlier dates. The as.numeric function can
be used to convert a Date object to its internal form. To convert this form
back to a Date object, it can be assigned a class of Date directly:

> thedate = as.Date(’1/15/2001’,format=’%m/%d/%Y’)
> ndate = as.numeric(thedate)
> ndate
[1] 11337
> class(ndate) = ’Date’
> ndate
[1] "2001-01-15"

To extract the components of the dates, the weekdays, months, days, or
quarters functions can be used. For example, to see if the R developers favor
a particular day of the week for their releases, we can first extract the release
dates from the CRAN website with a program like this:

4.2 The chron Package 59

f = url(’http://cran.cnr.berkeley.edu/src/base/R-2’,’r’)
rdates = data.frame()
while(1){

l = readLines(f,1)
if(length(l) == 0)break
if(regexpr(’href="R-’,l) > -1){

parts = strsplit(l,’ ’)[[1]]
rver = sub(’^.*>(R-.*).tar.gz.*’,’\\1’,l)

date = parts[18]
rdates = rbind(rdates,data.frame(ver=rver,Date=date))
}

}
rdates$Date = as.Date(rdates$Date,’%d-%B-%Y’)

Then, the days of the week can be tabulated after using the weekdays function
as follows:

> table(weekdays(rdates$Date))

Monday Thursday Tuesday
5 3 4

Monday, Thursday, and Tuesday seem to be the favorite days for releases.
For an alternative way of extracting pieces of a date, and for information

on possible output formats for Date objects, see Section 4.3.

4.2 The chron Package

The chron function converts dates and times to chron objects. The dates
and times are provided to the chron function as separate values, so some
preprocessing may be necessary to prepare input date/times for the chron
function. When using character values, the default format for dates is the
decimal month value followed by the decimal day value followed by the year,
using the slash as a separator. Alternative formats can be provided by using
the codes shown in Table 4.2.

Alternatively, dates can be specified by a numeric value, representing the
number of days since January 1, 1970. To input dates stored as the day of the
year, the origin= argument can be used to interpret numeric dates relative
to a different date.

The default format for times consists of the hour, minutes, and seconds,
separated by colons. Alternative formats can use the codes in Table 4.2.

Often the first task when using the chron package is to break apart the
date and times if they are stored together. In the following example, the
strsplit function is used to break apart the string.

60 4 Dates

Format codes for dates

Code Value

m Month (decimal number)
d Day of the month (decimal number)
y Year (4 digit)
mon Month (abbreviated)
month Month (full name)

Format codes for times

Code Value

h Hour
m Minute
s Second

Table 4.2. Format codes for chron objects

> library(chron)
> dtimes = c("2002-06-09 12:45:40","2003-01-29 09:30:40",
+ "2002-09-04 16:45:40","2002-11-13 20:00:40",
+ "2002-07-07 17:30:40")
> dtparts = t(as.data.frame(strsplit(dtimes,’ ’)))
> row.names(dtparts) = NULL
> thetimes = chron(dates=dtparts[,1],times=dtparts[,2],
+ format=c(’y-m-d’,’h:m:s’))
> thetimes
[1] (02-06-09 12:45:40) (03-01-29 09:30:40) (02-09-04 16:45:40)
[4] (02-11-13 20:00:40) (02-07-07 17:30:40)

Chron values are stored internally as the fractional number of days from Jan-
uary 1, 1970. The as.numeric function can be used to access the internal
values.

If times are stored as the number of seconds since midnight, they can be
accommodated by the POSIX classes (see Section 4.3).

For information on formatting chron objects for output, see Section 4.3.

4.3 POSIX Classes

POSIX represents a portable operating system interface, primarily for UNIX
systems, but available on other operating systems as well. Dates stored in the
POSIX format are date/time values (like dates with the chron package), but
also allow modification of time zones. Unlike the chron package, which stores
times as fractions of days, the POSIX date classes store times to the nearest
second, so they provide a more accurate representation of times.

There are two POSIX date/time classes, which differ in the way that the
values are stored internally. The POSIXct class stores date/time values as the

4.3 POSIX Classes 61

number of seconds since January 1, 1970, while the POSIXlt class stores them
as a list with elements for second, minute, hour, day, month, and year, among
others. Unless you need the list nature of the POSIXlt class, the POSIXct class
is the usual choice for storing dates in R.

The default input format for POSIX dates consists of the year, followed
by the month and day, separated by slashes or dashes; for date/time val-
ues, the date may be followed by white space and a time in the form
hour:minutes:seconds or hour:minutes; thus, the following are examples of
valid POSIX date or date/time inputs:

1915/6/16
2005-06-24 11:25
1990/2/17 12:20:05

If the input times correspond to one of these formats, as.POSIXct can be
called directly:

> dts = c("2005-10-21 18:47:22","2005-12-24 16:39:58",
+ "2005-10-28 07:30:05 PDT")
> as.POSIXlt(dts)
[1] "2005-10-21 18:47:22" "2005-12-24 16:39:58"
[3] "2005-10-28 07:30:05"

If your input date/times are stored as the number of seconds from January
1, 1970, you can create POSIX date values by assigning the appropriate class
directly to those values. Since many date manipulation functions refer to the
POSIXt pseudo-class, be sure to include it in the class attribute of the values.

> dts = c(1127056501,1104295502,1129233601,1113547501,
+ 1119826801,1132519502,1125298801,1113289201)
> mydates = dts
> class(mydates) = c(’POSIXt’,’POSIXct’)
> mydates
[1] "2005-09-18 08:15:01 PDT" "2004-12-28 20:45:02 PST"
[3] "2005-10-13 13:00:01 PDT" "2005-04-14 23:45:01 PDT"
[5] "2005-06-26 16:00:01 PDT" "2005-11-20 12:45:02 PST"
[7] "2005-08-29 00:00:01 PDT" "2005-04-12 00:00:01 PDT"

Conversions like this can be done more succinctly using the structure func-
tion:

> mydates = structure(dts,class=c(’POSIXt’,’POSIXct’))

The POSIX date/time classes take advantage of the POSIX date/time
implementation of your operating system, allowing dates and times in R to
be manipulated in the same way they would be in, for example, a C program.
The two most important functions in this regard are strptime, for inputting
dates, and strftime, for formatting dates for output. Both of these functions
use a variety of formatting codes, some of which are listed in Table 4.3, to

62 4 Dates

Code Meaning Code Meaning

%a Abbreviated weekday %A Full weekday
%b Abbreviated month %B Full month
%c Locale-specific date and time %d Decimal date
%H Decimal hours (24 hour) %I Decimal hours (12 hour)
%j Decimal day of the year %m Decimal month
%M Decimal minute %p Locale-specific AM/PM
%S Decimal second %U Decimal week of the year (starting

on Sunday)
%w Decimal weekday (0=Sunday) %W Decimal week of the year (starting

on Monday)
%x Locale-specific date %X Locale-specific time
%y 2-digit year %Y 4-digit year
%z Offset from GMT %Z Time zone (character)

Table 4.3. Format codes for strftime and strptime

specify the way dates are read or printed. For example, dates in many logfiles
are printed in a format like “16/Oct/2005:07:51:00”. To create a POSIXct
date from a date in this format, the following call to strptime could be used:

> mydate = strptime(’16/Oct/2005:07:51:00’,
+ format=’%d/%b/%Y:%H:%M:%S’)
[1] "2005-10-16 07:51:00"

Note that nonformat characters (like the slashes) are interpreted literally.
When using strptime, an optional time zone can be specified with the

tz= option.
Since POSIX date/time values are stored internally as the number of sec-

onds since January 1, 1970, they can easily use times that are not represented
by a formatted version of the hour, minute, and second. For example, suppose
we have a vector of date/time values stored as a date followed by the number
of seconds since midnight:

> mydates = c(’20060515 112504.5’,’20060518 101000.3’,
+ ’20060520 20035.1’)

The first step is to split the dates and times, and then use strptime to convert
the date to a POSIXct value. Then, the times can simply be added to this
value:

> dtparts = t(as.data.frame(strsplit(mydates,’ ’)))
> dtimes = strptime(dtparts[,1],format=’%Y%m%d’) +
+ as.numeric(dtparts[,2])
> dtimes
[1] "2006-05-16 07:15:04 PDT" "2006-05-19 04:03:20 PDT"
[3] "2006-05-20 05:33:55 PDT"

Another way to create POSIX dates is to pass the individual components
of the time to the ISOdate function. Thus, the first date/time value in the
previous example could also be created with a call to ISOdate:

4.4 Working with Dates 63

> ISOdate(2006,5,16,7,15,04,tz="PDT")
[1] "2006-05-16 07:15:04 PDT"

ISOdate will accept both numeric and character arguments.
For formatting dates for output, the format function will recognize the

type of your input date, and perform any necessary conversions before calling
strftime, so strftime rarely needs to be called directly. For example, to
print a date/time value in an extended format, we could use:

> thedate = ISOdate(2005,10,21,18,47,22,tz="PDT")
> format(thedate,’%A, %B %d, %Y %H:%M:%S’)
[1] "Friday, October 21, 2005 18:47:22"

When using POSIX dates, the optional usetz=TRUE argument to the format
function can be specified to indicate that the time zone should be displayed.
Additionally, as.POSIXlt and as.POSIXct can also accept Date or chron ob-
jects, so they can be input as described in the previous sections and converted
as needed. Conversion between the two POSIX forms is also possible.

The individual components of a POSIX date/time object can be extracted
by first converting to POSIXlt if necessary, and then accessing the components
directly:

> mydate = as.POSIXlt(’2005-4-19 7:01:00’)
> names(mydate)
[1] "sec" "min" "hour" "mday" "mon" "year"
[7] "wday" "yday" "isdst"
> mydate$mday
[1] 19

4.4 Working with Dates

Many of the statistical summary functions, like mean, min, max, etc are able
to transparently handle date objects. For example, consider the release dates
of various versions of R from 1.0 to 2.0:

> rdates = scan(what="")
1: 1.0 29Feb2000
3: 1.1 15Jun2000
5: 1.2 15Dec2000
7: 1.3 22Jun2001
9: 1.4 19Dec2001
11: 1.5 29Apr2002
13: 1.6 1Oct2002
15: 1.7 16Apr2003
17: 1.8 8Oct2003
19: 1.9 12Apr2004
21: 2.0 4Oct2004
23:

64 4 Dates

Read 22 items
> rdates = as.data.frame(matrix(rdates,ncol=2,byrow=TRUE))
> rdates[,2] = as.Date(rdates[,2],format=’%d%b%Y’)
> names(rdates) = c("Release","Date")
> rdates

Release Date
1 1.0 2000-02-29
2 1.1 2000-06-15
3 1.2 2000-12-15
4 1.3 2001-06-22
5 1.4 2001-12-19
6 1.5 2002-04-29
7 1.6 2002-10-01
8 1.7 2003-04-16
9 1.8 2003-10-08
10 1.9 2004-04-12
11 2.0 2004-10-04

Once the dates are properly read into R, a variety of calculations can be
performed:

> mean(rdates$Date)
[1] "2002-05-19"
> range(rdates$Date)
[1] "2000-02-29" "2004-10-04"
> rdates$Date[11] - rdates$Date[1]
Time difference of 1679 days

4.5 Time Intervals

If two times (using any of the date or date/time classes) are subtracted, R will
return the result in the form of a time difference, which represents a difftime
object. For example, New York City experienced a major blackout on July 13,
1977, and another on August 14, 2003. To calculate the time interval between
the two blackouts, we can simply subtract the two dates, using any of the
classes that have been introduced:

> b1 = ISOdate(1977,7,13)
> b2 = ISOdate(2003,8,14)
> b2 - b1
Time difference of 9528 days

If an alternative unit of time was desired, the difftime function could be
called, using the optional units= argument with any of the following values:
“auto”, “secs”, “mins”, “hours”, “days”, or “weeks”. So to see the difference
between blackouts in terms of weeks, we can use

4.6 Time Sequences 65

> difftime(b2,b1,units=’weeks’)
Time difference of 1361.143 weeks

Although difftime values are displayed with their units, they can be manip-
ulated like ordinary numeric variables; arithmetic performed with these values
will retain the original units.

To convert a time difference in days to one of years, a good approximation
is to divide the number of days by 365.25. However, the difftime value will
display the time units as days. To modify this, the units attribute of the
object can be modified:

> ydiff = (b2 - b1) / 365.25
> ydiff
Time difference of 26.08624 days
> attr(ydiff,’units’) = ’years’
> ydiff
Time difference of 26.08624 years

4.6 Time Sequences

The by= argument to the seq function can be specified either as a difftime
value, or in any units of time that the difftime function accepts, making it
very easy to generate sequences of dates. For example, to generate a vector of
ten dates, starting on July 4, 1976, with an interval of one day between them,
we could use

> seq(as.Date(’1976-7-4’),by=’days’,length=10)
[1] "1976-07-04" "1976-07-05" "1976-07-06"
[4] "1976-07-07" "1976-07-08" "1976-07-09"
[7] "1976-07-10" "1976-07-11" "1976-07-12"
[10] "1976-07-13"

All the date classes except for chron will accept an integer before the interval
provided as a by= argument. We could create a sequence of dates separated
by two weeks from June 1, 2000, to August 1, 2000, as follows:

> seq(as.Date(’2000-6-1’),to=as.Date(’2000-8-1’),by=’2 weeks’)
[1] "2000-06-01" "2000-06-15" "2000-06-29" "2000-07-13"
[5] "2000-07-27"

The cut function also understands units of days, weeks, months, and years,
making it very easy to create factors grouped by these units. See Section 5.5
for details.

Format codes can also be used to extract parts of dates, as an alternative
to the weekdays and other functions described in Section 4.3. We could look
at the distribution of weekdays for the R release dates as follows:

66 4 Dates

> table(format(rdates$Date,’%A’))

Monday Thursday Tuesday
5 3 4

This same technique can be used to convert dates to factors. For example, to
create a factor based on the release dates broken down by years we could use

> fdate = factor(format(rdates$Date,’%Y’))
> fdate
[1] 2004 2004 2005 2005 2005 2005 2006 2006 2006 2006

2007 2007
Levels: 2004 2005 2006 2007

