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Proposal feedback

Proposal feedback

Each group will take turns giving a 3-5 minute summary of your
project proposal.

Please ask each other questions and give constructive feedback

Afterwards, we will pass around hard copies of proposals and give
written feedback
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Proposal feedback

Proposal feedback: written feedback

For each of the project proposals assigned to you, please read a hard copy
and mark the proposal with inline comments. In particular, make a note of
any statements that are unclear and should be clarified.
For each proposal:

Suggest an additional hypothesis or method of analysis that could be
tried.

Include positive and negative feedback for each topic.

Write down any ideas that can be applied to own project that you
thought of after reading the proposal.
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Proposal feedback

Topics

We now discuss the final big idea in the course

1 Introduction

2 Security metrics and investment

3 Measuring cybercrime

4 Security games

We now consider strategic interaction between players
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Review: rational choice model Preferences and outcomes

Recall how we model rationality

Economics attempts to model the decisions we make, when faced
with multiple choices and when interacting with other strategic agents

Rational choice theory (RCT): model for decision-making

Game theory (GT): extends RCT to model strategic interactions
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Review: rational choice model Preferences and outcomes

Model of preferences

An agent is faced with a range of possible outcomes o1, o2 ∈ O, the
set of all possible outcomes

Notation

o1 � o2: the agent is strictly prefers o1 to o2.
o1 � o2: the agent weakly prefers o1 to o2;
o1 ∼ o2: the agent is indifferent between o1 and o2;

Outcomes can be also viewed as tuples of different properties
x̂ , ŷ ∈ O, where x̂ = (x1, x2, . . . , xn) and ŷ = (y1, y2, . . . , yn)
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Review: rational choice model Preferences and outcomes

Rational choice axioms

Rational choice theory assumes consistency in how outcomes are preferred.

Axiom

Completeness. For each pair of outcomes o1 and o2, exactly one of the
following holds: o1 � o2, o1 ∼ o2, or o2 � o1.

⇒ Outcomes can always be compared

Axiom

Transitivity. For each triple of outcomes o1, o2, and o3, if o1 � o2 and
o2 � o3, then o1 � o3.

⇒ People make choices among many different outcomes in a consistent
manner
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Review: rational choice model Utility

Utility

Rational choice theory defines utility as a way of quantifying consumer
preferences

Definition

(Utility function) A utility function U maps a set of outcomes onto
real-valued numbers, that is, U : O → R. U is defined such that
U(o1) > U(o2) ⇐⇒ o1 � o2 .

Agents make a rational decision by picking the outcome with highest
utility:

o∗ = arg max
o∈O

U(o) (1)
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Review: rational choice model Expected utility: modeling security threats as random acts

Why isn’t utility theory enough?

Only rarely do actions people take directly determine outcomes

Instead there is uncertainty about which outcome will come to pass

More realistic model: agent selects action a from set of all possible
actions A, and then outcomes O are associated with probability
distribution
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Review: rational choice model Expected utility: modeling security threats as random acts

Expected utility

Definition

(Expected utility (discrete)) The expected utility of an action a ∈ A is
defined by adding up the utility for all outcomes weighed by their
probability of occurrence:

E [U(a)] =
∑
o∈O

U(o) · P(o|a) (2)

Agents make a rational decision by maximizing expected utility:

a∗ = arg max
a∈A

E [U(a)] (3)
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Review: rational choice model Expected utility: modeling security threats as random acts

Example: process control system security

Source: http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
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Review: rational choice model Expected utility: modeling security threats as random acts

Example: process control system security

Actions available: A = {disconnect, connect}
Outcomes available: O = {successful attack,no successful attack}
Probability of successful attack is 0.01 (P(attack|connect) = 0.01)

If systems are disconnected, then P(attack|disconnect) = 0
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Review: rational choice model Expected utility: modeling security threats as random acts

Example: process control system security

successful attack no succ. attack
Action U P(attack|action) U P(no attack|action) E [U(action)]

connect -50 0.01 10 0.99 9.4
disconnect -10 0 -10 1 -10

⇒ risk-neutral IT security manager chooses to connect since
E [U(connect)] > E [U(disconnect)].

This model assumes fixed probabilities for attack. Is this assumption
realistic?
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Game theory Introduction and notation

Games vs. Optimization

Optimization: Player vs Nature

Games: Player vs Player
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Game theory Introduction and notation

Strategy

Book of Qi

War

Business

Policy

36 Stratagems (Examples)

Befriend a distant state while attacking a neighbor

Sacrifice the plum tree to preserve the peach tree

Feign madness but keep your balance

See http://en.wikipedia.org/wiki/Thirty-Six_Stratagems
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Game theory Introduction and notation

Representing a game with a payoff matrix

Suppose we have two players A and B.

A’s actions AA = {u, d}
B’s actions AB = {l , r}
Possible outcomes O = {(u, l), (u, r), (d , l), (d , r)}
We represent 2-player, 2-strategy games with a payoff matrix

Player B Player B
chooses l chooses r

Player A chooses u (UA(u, l),UB(u, l)) (UA(u, r),UB(u, r))
Player A chooses d (UA(d , l),UB(d , l)) (UA(d , r),UB(d , r))
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Game theory Introduction and notation

Returning to the process control system example

Suppose we have two players: plant security manager and a terrorist

Manager’s actions Amgr = {disconnect, connect}
Terrorist’s actions Aterr = {attack,don’t attack}
Possible outcomes O = {(a1, a3), (a1, a4), (a2, a3), (a2, a4)}
We represent 2-player, 2-strategy games with a payoff matrix

Terrorist
attack don’t attack

Manager connect (−50, 50) (10, 0)
disconnect (−10,−10) (−10, 0)
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Game theory Introduction and notation

Important Notions

Zero-Sum

In a zero-sum game, the sum of player utilities is zero.

zero-sum not zero-sum
heads tails

heads (1,−1) (−1, 1)
tails (−1, 1) (1,−1)

invest defer

invest (1, 1) (1, 2)
defer (2, 1) (0, 0)
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Game theory Finding equilibrium outcomes

How can we determine which outcome will happen?

We look for particular solution concepts
1 Dominant strategy equilibrium
2 Nash equilibrium

Pareto optimal outcomes
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Game theory Finding equilibrium outcomes

Dominant strategy equilibrium

A player has a dominant strategy if that strategy achieves the highest
payoff regardless of what other players do.

A dominant strategy equilibrium is one in which each player has and
plays her dominant strategy.

Example 1: Dominant Strategy Equilibria?

yes: (down, left)

Bob
left right

Alice up (1, 2) (0, 1)
down (2, 1) (1, 0)
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Game theory Finding equilibrium outcomes

Nash equilibrium

Nash equilibrium

A Nash equilibrium is an assignment of strategies to players such that no
player can improve her utility by changing strategies.

A Nash equilibrium is called strong if every player strictly prefers their
strategy given the current configuration.

It is called weak if at least one player is indifferent about changing
strategies.

Nash equilibrium for 2-player game

For a 2-person game between players A and B, a pair of strategies (ai , aj)
is a Nash equilibrium if UA(ai , aj) ≥ UtilityA(ai ′ , aj) for every i ′ ∈ AA

where i ′ 6= i and UB(ai , aj) ≥ UB(ai , aj ′) for every j ∈ AB where j ′ 6= j .
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Game theory Finding equilibrium outcomes

Finding Nash equilibria

Nash equilibrium for 2-player game

For a 2-person game between players A and B, a pair of strategies (ai , aj)
is a Nash equilibrium if UA(ai , aj) ≥ UA(ai ′ , aj) for every i ′ ∈ AA where
i ′ 6= i and UB(ai , aj) ≥ UB(ai , aj ′) for every j ∈ AB where j ′ 6= j .

Example 1: Nash equilibria? (up,left) and (down, right)

Bob
left right

Alice up (2, 1) (0, 0)
down (0, 0) (1, 2)

(up,left)?: UA(up, left) > UA(down, left)?
2 > 0 ? yes!
UB(up, left) > UB(up, right)?
1 > 0 ? yes!

(up,right)?: UA(up, right) > UA(down, right)?
0 > 1 ? no!
UB(up, right) > UB(up, left)?
0 > 1 ? no!
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Exercise: is there a dominant strategy or Nash equilibrium
for these games?

Nash: (down,left) and (up,right) No Nash equilibrium

left right

up (1, 1) (1, 2)
down (2, 1) (0, 0)

left right

up (1,−1) (−1, 1)
down (−1, 1) (1,−1)
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Game theory Finding equilibrium outcomes

Pareto Optimality

Definition

An outcome of a game is Pareto optimal if no other outcome makes at
least one player strictly better off, while leaving every player at least as
well off.

Example: Pareto-optimal outcome? everything except defect/defect

cooperate defect

cooperate (−1,−1) (−5, 0)
defect (0,−5) (−2,−2)
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Game theory Finding equilibrium outcomes

Prisoners’ dilemma

deny confess

deny (−1,−1) (−5, 0)
confess (0,−5) (−2,−2)
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Game theory Finding equilibrium outcomes

Thoughts on the Prisoners’ Dilemma

Can you see why the equilibrium strategy is not always Pareto
efficient?

Exemplifies the difficulty of cooperation when players can’t commit to
a actions in advance

In a repeated game, cooperation can emerge because anticipated
future benefits shift rewards

But we are studying one-shot games, where there is no anticipated
future benefit

Here’s one way to use psychology to commit to a strategy:
http://www.tutor2u.net/blog/index.php/economics/

comments/game-show-game-theory
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Game theory Finding equilibrium outcomes

Split or Steal

Nick
split steal

Ibrahim split (6 800, 6 800) (0, 13 600)
steal (13 600, 0) (0, 0)
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Game theory Finding equilibrium outcomes

Prisoners’ dilemma in infosec: sharing security data

share don’t share

share (−1,−1) (−5, 0)
don’t share (0,−5) (−2,−2)

Note, this only applies when both parties are of the same type, and can benefit each other from

sharing. Doesn’t apply in the case of take-down companies due to the outsourcing of security
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Game theory Finding equilibrium outcomes

Assurance games: Cold war arms race

USSR
refrain build

USA refrain (4,4) (1,3)
build (3,1) (2,2)

Exercise: compute the equilibrium outcome (Nash or dominant strategy)
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Game theory Finding equilibrium outcomes

Assurance games in infosec: Cyber arms race

Russia
refrain build

USA refrain (4,4) (1,3)
build (3,1) (2,2)
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Game theory Finding equilibrium outcomes

Assurance games in infosec: Upgrading protocols

Many security protocols (e.g., DNSSEC, BGPSEC) require widespread

adoption to be useful
upgrade don’t upgrade

upgrade (4,4) (1,3)
don’t upgrade (3,1) (2,2)
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Game theory Finding equilibrium outcomes

Battle of the sexes

party home

party (10, 5) (0, 0)
home (0, 0) (5, 10)
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Game theory Finding equilibrium outcomes

Stag-hunt games and infosec: joint cybercrime defense

Stag hunt Coordinating malware response
stag hare

stag (10, 10) (0, 7)
hare (7, 0) (7, 7)

join WG protect firm

join WG (10, 10) (0, 7)
protect firm (7, 0) (7, 7)
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Game theory Finding equilibrium outcomes

Chicken

dare chicken

dare (0, 0) (7, 2)
chicken (2, 7) (5, 5)
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Game theory Finding equilibrium outcomes

Chicken in infosec: who pays for malware cleanup?

ISPs
Pay up Don’t pay

Gov Pay up (0, 0) (−1, 1)
Don’t pay (1,−1) (−2,−2)
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Game theory Finding equilibrium outcomes

How to coordinate (Varian, Intermediate Microeconomics)

Goals of coordination game: force the other player to cooperate

Assurance game: “coordinate at an equilibrium that you both like”
Stag-hunt game: “coordinate at an equilibrium that you both like”
Battle of the sexes: “coordinate at an equilibrium that one of you
likes”
Prisoner’s dilemma: “play something other than an equilibrium
strategy”
Chicken: “make a choice leading to your preferred outcome”
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Game theory Finding equilibrium outcomes

How to coordinate (Varian, Intermediate Microeconomics)

In assurance, stag-hunt, battle-of-the-sexes, and chicken, coordination
can be achieved by one player moving first

In prisoner’s dilemma, that doesn’t work? Why not?

Instead, for prisoner’s dilemma games one must use repetition or
contracts.

Robert Axelrod ran repeated game tournaments where he invited
economists to submit strategies for prisoner’s dilemma in repeated
games

Winning strategy? Tit-for-tat
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Game theory Finding equilibrium outcomes

Assurance games: Cyber arms race

Russia
refrain build

USA refrain (4,4) (1,3)
build (3,1) (2,2)
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Game theory Finding equilibrium outcomes

Russia proposed a cyberwar peace treaty
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Game theory Finding equilibrium outcomes

US Department of Homeland Security signals support for
DNSSEC

Source: https://www.dnssec-deployment.org/index.php/2011/11/dhs-wins-national-cybersecurity-award-for-dnssec-work/
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Mixed strategies

Process control system example: Nash equilibria?

Suppose we have two players: plant security manager and a terrorist

Manager’s actions Amgr = {disconnect, connect}
Terrorist’s actions Aterr = {attack,don’t attack}
Possible outcomes O = {(a1, a3), (a1, a4), (a2, a3), (a2, a4)}

Terrorist
attack don’t attack

Manager connect (−50, 50) (10, 0)
disconnect (−10,−10) (−10, 0)
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Mixed strategies

Mixed strategies

Definitions

A pure strategy is a single action (e.g., connect or disconnect)

A mixed strategy is a lottery over pure strategies (e.g.〈
connect: 1

6 , disconnect: 5
6

〉
, or

〈
attack: 1

3 , not attack: 2
3

〉
).
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Mixed strategies

Process control system example: mixed Nash equilibrium

Terrorist
attack don’t attack

Manager connect (−50, 50) (10, 0)
disconnect (−10,−10) (−10, 0)

Mixed strategy Nash equilibrium

Manager:
〈
connect: 1

6 , disconnect: 5
6

〉
Terrorist:

〈
attack: 1

3 , not attack: 2
3

〉
E (Umgr) =

1

6
(

1

3
· −50 +

2

3
· 10) +

5

6
(

1

3
· −10 +

2

3
· −10)

= −10

E (Uterr) =
1

6
(

1

3
· 50 +

2

3
· 0) +

5

6
(

1

3
· −10 +

2

3
· 0)

= 0
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Mixed strategies

Existence of Nash Equilibria

Theorem (John Nash, 1951)

Every game with a finite number of players and a finite set of actions has
at least one Nash equilibrium involving mixed strategies.

Side Note

The proof of this theorem is non-constructive. This means that while the
equilibria must exist, there’s no guarantee that finding the equilibria is
computationally feasible.
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Mixed strategies

Process control system example: mixed Nash equilibrium

Terrorist
attack don’t attack

P(action) a (1− a)

Manager connect c (−50, 50) (10, 0)
disconnect (1− c) (−10,−10) (−10, 0)

First calculate the manager’s payoff:

E (Umgr) = −50 · ca− 10(1− c)a + 10c(1− a)− 10(1− c)(1− a)

= −60ca + 20c − 10

Find c where δc(E (Umgr)) > 0

δc(−60ca + 20c − 10) > 0

−60a + 20 > 0

a <
1

3

Similarly a > 1
3 when δc(E (Umgr)) < 0
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Mixed strategies

Process control system example: mixed Nash equilibrium

Terrorist
attack don’t attack

P(action) a (1− a)

Manager connect c (−50, 50) (10, 0)
disconnect (1− c) (−10,−10) (−10, 0)

Next calculate the terrorist’s payoff:

E (Uterr) = 50 · ca− 10(1− c)a + 0c(1− a) + 0(1− c)(1− a)

= 60ca− 10a

Find a where δa(E (Uterr)) > 0

δa(60ca− 10a) > 0

60c − 10 > 0

c >
1

6

Similarly c < 1
6 when δa(E (Uterr)) < 0
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Mixed strategies

Best response curve

c0 1

0

1
Attacker’s best response

1
6

Manager’s best response

1
3

Nash equilibrium
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Mixed strategies

Exercise: compute mixed strategy equilibria

Bob
left right

P(action) b (1− b)

Alice up a (2, 1) (0, 0)
down (1− a) (0, 0) (1, 2)

1 Are there any pure Nash equilibria?

2 What is Alice’s expected payoff?

3 What is Bob’s expected payoff?

4 What is the mixed strategy Nash equilibrium?

5 Draw the best-response curves
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Modeling interdependent security Why is security often interdependent?

Interdependent Security: Examples

Software Engineering
Product security depends on the security of all components

Interconnected Supply Chains
The security of clients’ and suppliers’ systems determines
own security

Information Sharing in Business Networks
The confidentiality of informations depends on the
trustworthiness of all contacts (or “friends”)

Internet Security
Botnets threaten our systems because other peoples’
systems are insufficiently secured
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Modeling interdependent security Why is security often interdependent?

Physical World: Airline Baggage Security

A B

1988: Lockerbie
Bomb explodes in flight PA 103 killing 259.
Malta → Frankfurt → London → New York

2010: Cargo bombs
hidden in toner cartridges to be activated remotely
during approach to US airports.
Jemen → Kln/Bonn → London → USA

H. Kunreuther & G. Heal: Interdependent Security, Journal of Risk and Uncertainty

26, 231–249, 2003
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Modeling interdependent security Modeling interdependent security

Interdependent Security

A B

PlossA ≥ Pattack · (1− sA)

1− PlossA = (1− Pattack · (1− sA)) (1− Pattack · (1− sB))

Ploss A = 1−
[
(1− Pattack · (1− sA)) (1− Pattack · (1− sB))

]
→ Own payoff depends on own and others’ security choices

P ∈ [0, 1]: probability of attempted attack, respectively loss due to attack

s ∈ {0, 1}: discrete choice of security level
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Modeling interdependent security Modeling interdependent security

Utility Function

Simple utility function of risk-neutral player A:

UA = − L ·

expected loss

PlossA − sA

security investment

= −L + L · (1− PlossA)− sA

Utility function when A’s security depends on B

= −L + L · (1− Pattack · (1− sA)) (1− Pattack · (1− sB))− sA
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Modeling interdependent security Modeling interdependent security

Matrix Game of Interdependent Security

Nash equilibrium

social optimum

→ Interdependence can lead to security under-investment

player A

sA = 0 sA = 1

insecure secure

player B

sB = 0

sB = 1

insecure

secure

−3/2

−3/2

L = 2

Pattack = 1/2

−1

−1

−2

−2

−1

−1

no improvement

n
o

im
p

ro
ve

m
en

t

−3 −3

−3 −2

player A’s utility

player B’s utility

sum of A’s and B’s utility

Ui = −L + L
[
(1− Pattack · (1− si )) (1− Pattack · (1− s¬i ))

]
−si
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Modeling interdependent security Modeling interdependent security

Utility Function

Simple utility function of risk-neutral player A:

UA = − L ·

expected loss

PlossA − sA

security investment

= −L + L · (1− PlossA)− sA

Modified utility function with liability:

UA = −L · PlossA − sA + L · PattackB

compensation if player B caused the loss

· (1− sB)

− L · PattackA

compensation if player A caused the loss

· (1− sA)
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Modeling interdependent security Modeling interdependent security

Utility Function

Simple utility function of risk-neutral player A:

UA = − L ·

expected loss

PlossA − sA

security investment

= −L + L · (1− PlossA)− sA

Modified utility function with liability:

UA = −L · PlossA − sA + L · PattackB

compensation if player B caused the loss

· (1− sB)

− L · PattackA

compensation if player A caused the loss

· (1− sA)
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Modeling interdependent security Liability as means of encouraging security investment

Interdependent Security with Liability

Nash equilibrium

→ Liability internalizes negative externalities of insecurity

player A

sA = 0 sA = 1

insecure secure

player B

sB = 0

sB = 1

insecure

secure

−3/2

−3/2

L = 2

Pattack = 1/2

−1

−1

−1

−1

−2

−2

no improvement

n
o

im
p

ro
ve

m
en

t

−3 −3

−3 −2

player A’s utility

player B’s utility

sum of A’s and B’s utility

Ui = −L + L
[
(1− Pattack · (1− si )) (1− Pattack · (1− s¬i ))

]
−si
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