Introduction to Game Theory

Tyler Moore
CSE 7338
Computer Science \& Engineering Department, SMU, Dallas, TX
Lectures 7-8

Outline

Proposal feedback
2 Review: rational choice model

3 Game theory

4 Mixed strategies
Modeling interdependent security

- Each group will take turns giving a 3-5 minute summary of your project proposal.
- Please ask each other questions and give constructive feedback
- Afterwards, we will pass around hard copies of proposals and give written feedback

Proposal feedback

Proposal feedback: written feedback

For each of the project proposals assigned to you, please read a hard copy and mark the proposal with inline comments. In particular, make a note of any statements that are unclear and should be clarified.
For each proposal:

- Suggest an additional hypothesis or method of analysis that could be tried.
- Include positive and negative feedback for each topic.
- Write down any ideas that can be applied to own project that you thought of after reading the proposal.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

We now discuss the final big idea in the course
(1) Introduction
(2) Security metrics and investment
(3) Measuring cybercrime

- Security games
- We now consider strategic interaction between players

- Economics attempts to model the decisions we make, when faced with multiple choices and when interacting with other strategic agents
- Rational choice theory (RCT): model for decision-making
- Game theory (GT): extends RCT to model strategic interactions

- An agent is faced with a range of possible outcomes $o_{1}, o_{2} \in \mathcal{O}$, the set of all possible outcomes
- Notation
- $o_{1} \succ o_{2}$: the agent is strictly prefers o_{1} to o_{2}.
- $o_{1} \succeq o_{2}$: the agent weakly prefers o_{1} to o_{2};
- $o_{1} \sim o_{2}$: the agent is indifferent between o_{1} and o_{2};
- Outcomes can be also viewed as tuples of different properties
$\hat{x}, \hat{y} \in \mathcal{O}$, where $\hat{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\hat{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

Rational choice theory assumes consistency in how outcomes are preferred.
Axiom
Completeness. For each pair of outcomes o_{1} and o_{2}, exactly one of the following holds: $o_{1} \succ o_{2}, o_{1} \sim o_{2}$, or $o_{2} \succ o_{1}$.
\Rightarrow Outcomes can always be compared

Axiom

Transitivity. For each triple of outcomes o_{1}, o_{2}, and o_{3}, if $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$, then $o_{1} \succ o_{3}$.
\Rightarrow People make choices among many different outcomes in a consistent manner

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rational choice theory defines utility as a way of quantifying consumer preferences

Definition
(Utility function) A utility function U maps a set of outcomes onto real-valued numbers, that is, $U: \mathcal{O} \rightarrow \mathbb{R}$. U is defined such that $U\left(o_{1}\right)>U\left(o_{2}\right) \Longleftrightarrow o_{1} \succ o_{2}$

Agents make a rational decision by picking the outcome with highest utility:

$$
\begin{equation*}
o^{*}=\arg \max _{o \in \mathcal{O}} U(o) \tag{1}
\end{equation*}
$$

Why isn't utility theory enough?

Notes

- Only rarely do actions people take directly determine outcomes
- Instead there is uncertainty about which outcome will come to pass
- More realistic model: agent selects action a from set of all possible actions \mathcal{A}, and then outcomes \mathcal{O} are associated with probability distribution

Expected utility

Definition
(Expected utility (discrete)) The expected utility of an action $a \in \mathcal{A}$ is defined by adding up the utility for all outcomes weighed by their probability of occurrence:

$$
\begin{equation*}
E[U(a)]=\sum_{o \in \mathcal{O}} U(o) \cdot P(o \mid a) \tag{2}
\end{equation*}
$$

Agents make a rational decision by maximizing expected utility:

$$
\begin{equation*}
a^{*}=\arg \max _{a \in \mathcal{A}} E[U(a)] \tag{3}
\end{equation*}
$$

Example: process control system security

Figure 2.1: Example exposure time-map with red marking systems with known exploits Source: http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
\qquad
\qquad

- Actions available: $\mathcal{A}=\{$ disconnect, connect $\}$
- Outcomes available: $\mathcal{O}=$ \{successful attack, no successful attack $\}$
- Probability of successful attack is $0.01(P($ attack \mid connect $)=0.01)$
- If systems are disconnected, then $P($ attack \mid disconnect $)=0$

Example: process control system security

	successful attack							no succ. attack	
Action	U	$P($ attack \mid action $)$	U	P (no attack\|action)	$E[U$ (action) $]$				
connect	-50	0.01	10	0.99	9.4				
disconnect	-10	0	-10	1	-10				

\Rightarrow risk-neutral IT security manager chooses to connect since $E[U($ connect $)]>E[U($ disconnect $)]$.

This model assumes fixed probabilities for attack. Is this assumption realistic?

Strategy	
Game theory	Introduction and notation
Book of Qi	
- War	
- Business	
- Policy	

36 Stratagems (Examples)

- Befriend a distant state while attacking a neighbor
- Sacrifice the plum tree to preserve the peach tree
- Feign madness but keep your balance
- See http://en.wikipedia.org/wiki/Thirty-Six_Stratagems

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Suppose we have two players A and B.
- A's actions $\mathcal{A}_{A}=\{u, d\}$
- B's actions $\mathcal{A}_{B}=\{I, r\}$
- Possible outcomes $\mathcal{O}=\{(u, l),(u, r),(d, l),(d, r)\}$
- We represent 2-player, 2-strategy games with a payoff matrix

	Player B chooses /	Player B chooses r
Player A chooses u	$\left(U_{A}(u, I), U_{B}(u, I)\right)$	$\left(U_{A}(u, r), U_{B}(u, r)\right)$
Player A chooses d	$\left(U_{A}(d, I), U_{B}(d, I)\right)$	$\left(U_{A}(d, r), U_{B}(d, r)\right)$

\qquad
\qquad
\qquad
\qquad

Returning to the process control system example

Notes

- Suppose we have two players: plant security manager and a terrorist
- Manager's actions $\mathcal{A}_{\text {mgr }}=\{$ disconnect, connect $\}$
- Terrorist's actions $\mathcal{A}_{\text {terr }}=\{$ attack, don't attack $\}$
- Possible outcomes $\mathcal{O}=\left\{\left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{2}, a_{4}\right)\right\}$
- We represent 2-player, 2-strategy games with a payoff matrix

Game theory Introduction and notation

Important Notions

Zero-Sum
In a zero-sum game, the sum of player utilities is zero

	zero-sum			not zero-sum		
	heads	tails		\mid invest		

How can we determine which outcome will happen?

Notes

- We look for particular solution concepts

Notes
\qquad
(1) Dominant strategy equilibrium
(2) Nash equilibrium

- Pareto optimal outcomes
- A player has a dominant strategy if that strategy achieves the highest payoff regardless of what other players do.
- A dominant strategy equilibrium is one in which each player has and plays her dominant strategy.

Example 1: Dominant Strategy Equilibria?

		Bob	
		left	right
Alice	up	$(1,2)$	$(0,1)$
	down	$(2,1)$	$(1,0)$

Nash equilibrium

Nash equilibrium
A Nash equilibrium is an assignment of strategies to players such that no player can improve her utility by changing strategies.

- A Nash equilibrium is called strong if every player strictly prefers their strategy given the current configuration.
- It is called weak if at least one player is indifferent about changing strategies.

Nash equilibrium for 2-player game
For a 2-person game between players A and B, a pair of strategies $\left(a_{i}, a_{j}\right)$ is a Nash equilibrium if $U_{A}\left(a_{i}, a_{j}\right) \geq$ Utility $_{A}\left(a_{i^{\prime}}, a_{j}\right)$ for every $i^{\prime} \in \mathcal{A}_{A}$ where $i^{\prime} \neq i$ and $U_{B}\left(a_{i}, a_{j}\right) \geq U_{B}\left(a_{i}, a_{j^{\prime}}\right)$ for every $j \in \mathcal{A}_{B}$ where $j^{\prime} \neq j$.

Finding Nash equilibria

Nash equilibrium for 2-player game
For a 2-person game between players A and B, a pair of strategies $\left(a_{i}, a_{j}\right)$ is a Nash equilibrium if $U_{A}\left(a_{i}, a_{j}\right) \geq U_{A}\left(a_{i^{\prime}}, a_{j}\right)$ for every $i^{\prime} \in \mathcal{A}_{A}$ where $i^{\prime} \neq i$ and $U_{B}\left(a_{i}, a_{j}\right) \geq U_{B}\left(a_{i}, a_{j^{\prime}}\right)$ for every $j \in \mathcal{A}_{B}$ where $j^{\prime} \neq j$.

Example 1: Nash equilibria? (up,left) and (down, right)

		Bob		(up,left)?:	$U_{A}(\text { up, left })>U_{A}(\text { down, left }) ?$
		left	right	(up,right)?:	$U_{B}($ up, left $)>U_{B}($ up, right $)$?
Alice	up	$(2,1)$	$(0,0)$		$\begin{aligned} & \left.U_{A} \text { (up, right }\right)>U_{A} \text { (down, right)? } \\ & 0>1 \text { ? no! } \end{aligned}$
	down	$(0,0)$	$(1,2)$		$\begin{aligned} & U_{B} \text { (up, right) }>U_{B}(\text { up, left }) \text { ? } \\ & 0>1 ? \text { no! } \end{aligned}$

Exercise: is there a dominant strategy or Nash equilibrium for these games?

	left	right
up	$(1,1)$	$(1,2)$
down	$(2,1)$	$(0,0)$

	left	right
up	$(1,-1)$	$(-1,1)$
down	$(-1,1)$	$(1,-1)$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Definition
An outcome of a game is Pareto optimal if no other outcome makes at least one player strictly better off, while leaving every player at least as well off.

Example: Pareto-optimal outcome? everything except defect/defect

	cooperate	defect
cooperate	$(-1,-1)$	$(-5,0)$
defect	$(0,-5)$	$(-2,-2)$

Prisoners' dilemma

Game theory Finding equilibrium outcomes

Thoughts on the Prisoners' Dilemma

- Can you see why the equilibrium strategy is not always Pareto efficient?
- Exemplifies the difficulty of cooperation when players can't commit to a actions in advance
- In a repeated game, cooperation can emerge because anticipated future benefits shift rewards
- But we are studying one-shot games, where there is no anticipated future benefit
- Here's one way to use psychology to commit to a strategy: http://www.tutor2u.net/blog/index.php/economics/ comments/game-show-game-theory

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Note, this only applies when both parties are of the same type, and can benefit each other from sharing. Doesn't apply in the case of take-down companies due to the outsourcing of security

		USSR	
		refrain	build
USA	refrain	$(4,4)$	$(1,3)$
	build	$(3,1)$	$(2,2)$

Exercise: compute the equilibrium outcome (Nash or dominant strategy)

Assurance games in infosec: Cyber arms race

		Russia	
	refrain	build	
USA	refrain	$(4,4)$	$(1,3)$
	build	$(3,1)$	$(2,2)$

Game theory Finding equilibrium outcomes

Assurance games in infosec: Upgrading protocols

Many security protocols (e.g., DNSSEC, BGPSEC) require widespread

adoption to be useful	upgrade	don't upgrade
upgrade	$(4,4)$	$(1,3)$
don't upgrade	$(3,1)$	$(2,2)$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	party	home
party	$(10,5)$	$(0,0)$
home	$(0,0)$	$(5,10)$

\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Goals of coordination game: force the other player to cooperate
- Assurance game: "coordinate at an equilibrium that you both like"
- Stag-hunt game: "coordinate at an equilibrium that you both like"
- Battle of the sexes: "coordinate at an equilibrium that one of you likes"
- Prisoner's dilemma: "play something other than an equilibrium strategy"
- Chicken: "make a choice leading to your preferred outcome"

Game theory Finding equilibrium outcomes
How to coordinate (Varian, Intermediate Microeconomics)

- In assurance, stag-hunt, battle-of-the-sexes, and chicken, coordination can be achieved by one player moving first
- In prisoner's dilemma, that doesn't work? Why not?
- Instead, for prisoner's dilemma games one must use repetition or contracts.
- Robert Axelrod ran repeated game tournaments where he invited economists to submit strategies for prisoner's dilemma in repeated games
- Winning strategy? Tit-for-tat

Game theory Finding equilibrium outcomes	
Assurance games: Cyber arms race	Notes

		Russia	
		refrain	build
USA	refrain	$(4,4)$	$(1,3)$
	build	$(3,1)$	$(2,2)$

Russia proposed a cyberwar peace treaty

- REUTERS menous ${ }^{\text {a }}$ (
mest- wen-	
antac	
Fallow Reuter	Russia says many states arming for cyber warfare
	Heemem Bx
RECommenoed vieo	*Russian-sponsored gathering rallies support for UN 四ssuee treaty
	GARMISCH-PARTENKIRCHEN, Germany, April 25 (Reuters) - Russia has Print stepped up its campaign for a globally binding treaty on cyber security \qquad
	warning that many states are acquiring cyber warfare capabilities that, if Related News unleashed, could subvert economies and bring down critical infrastructure. Suspected cy
	Inemen

DHS wins national cybersecurity award for DNSSEC work

Edvard Rhyne. the division's program manager. accepted he award fiom White House Cyber Coordinator Howard Schmidta at the National
Cyberssecurity innovaion Conference in Washington. DC, on Octooer 11.
Edvard Rhyne. the division's program manager. accepted he award fiom White House Cyber Coordinator Howard Schmidta at the National
Cyberssecurity innovaion Conference in Washington. DC, on Octooer 11.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Source：https：／／www．dnssec－deployment．org／index．php／2011／11／dhs－wins－national－cybersecurity－award－for－dnssec－work／

Mixed strategies

Process control system example：Nash equilibria？

Notes

－Suppose we have two players：plant security manager and a terrorist
－Manager＇s actions $\mathcal{A}_{\text {mgr }}=\{$ disconnect, connect $\}$
－Terrorist＇s actions $\mathcal{A}_{\text {terr }}=\{$ attack，don＇t attack $\}$
－Possible outcomes $\mathcal{O}=\left\{\left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{2}, a_{4}\right)\right\}$

		Terrorist	
		attack	don＇t attack
Manager	connect	$(-50,50)$	$(10,0)$
	disconnect	$(-10,-10)$	$(-10,0)$

Mixed strategies

Definitions

－A pure strategy is a single action（e．g．，connect or disconnect）
－A mixed strategy is a lottery over pure strategies（e．g． $\left\langle\right.$ connect：$\frac{1}{6}$ ，disconnect：$\left.\frac{5}{6}\right\rangle$ ，or $\left\langle\right.$ attack：$\frac{1}{3}$ ，not attack：$\left.\frac{2}{3}\right\rangle$ ）．

Process control system example：mixed Nash equilibrium

		Terrorist	
		attack	don＇t attack
Manager	connect	$(-50,50)$	$(10,0)$
	disconnect	$(-10,-10)$	$(-10,0)$

Mixed strategy Nash equilibrium

- Manager：〈connect：$\frac{1}{6}$ ，disconnect：$\frac{5}{6}$ 〉
- Terrorist：〈attack：$\frac{1}{3}$ ，not attack：$\left.\frac{2}{3}\right\rangle$

$$
\begin{aligned}
E\left(U_{\text {mgr }}\right) & =\frac{1}{6}\left(\frac{1}{3} \cdot-50+\frac{2}{3} \cdot 10\right) & & +\frac{5}{6}\left(\frac{1}{3} \cdot-10+\frac{2}{3} \cdot-10\right) \\
& =-10 & & +\frac{5}{6}\left(\frac{1}{3} \cdot-10+\frac{2}{3} \cdot 0\right) \\
E\left(U_{\text {terr }}\right) & =\frac{1}{6}\left(\frac{1}{3} \cdot 50+\frac{2}{3} \cdot 0\right) & & \\
& =0 & &
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Theorem (John Nash, 1951)
Every game with a finite number of players and a finite set of actions has at least one Nash equilibrium involving mixed strategies.

Side Note
The proof of this theorem is non-constructive. This means that while the equilibria must exist, there's no guarantee that finding the equilibria is computationally feasible.

Process control system example: mixed Nash equilibrium

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Similarly $c<\frac{1}{6}$ when $\delta_{a}\left(E\left(U_{\text {terr }}\right)\right)<0$

Mixed strategies
Best response curve

1		

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\[

\]

(1) Are there any pure Nash equilibria?
(2) What is Alice's expected payoff?
(What is Bob's expected payoff?
(9) What is the mixed strategy Nash equilibrium?
(0) Draw the best-response curves

| | Modeling interdependent security Why is security often interdependent? |
| :--- | :--- | :--- |
| Interdependent Security: Examples | |

Modeling interdependent security Why is security often interdependent?
Physical World: Airline Baggage Security

H. Kunreuther \& G. Heal: Interdependent Security, Journal of Risk and Uncertainty 26, 231-249, 2003

$$
\begin{aligned}
P_{\text {loss } A} & \geq P_{\text {attack }} \cdot\left(1-s_{A}\right) \\
1-P_{\text {loss } A} & =\left(1-P_{\text {attack }} \cdot\left(1-s_{A}\right)\right)\left(1-P_{\text {attack }} \cdot\left(1-s_{B}\right)\right) \\
P_{\text {loss } A} & =1-\left[\left(1-P_{\text {attack }} \cdot\left(1-s_{A}\right)\right)\left(1-P_{\text {attack }} \cdot\left(1-s_{B}\right)\right)\right]
\end{aligned}
$$

\rightarrow Own payoff depends on own and others' security choices
$P \in[0,1]$: probability of attempted attack, respectively loss due to attack
$s \in\{0,1\}$: discrete choice of security level

Simple utility function of risk-neutral player A :

$$
\begin{aligned}
& \text { expected loss security investment } \\
U_{A} & =-\grave{L} \cdot P_{\text {loss } A}-s_{A}^{\prime} \\
& =-L+L \cdot\left(1-P_{\text {loss } A}\right)-s_{A}
\end{aligned}
$$

Utility function when A 's security depends on B

$$
=-L+L \cdot\left(1-P_{\text {attack }} \cdot\left(1-s_{A}\right)\right)\left(1-P_{\text {attack }} \cdot\left(1-s_{B}\right)\right)-s_{A}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Interdependence can lead to security under-investment

Utility Function

Simple utility function of risk-neutral player A :

$$
\begin{aligned}
& \text { expected loss security investment } \\
U_{A} & =-\grave{L} \cdot P_{\text {loss } A}-s_{A}^{\prime} \\
& =-L+L \cdot\left(1-P_{\text {loss } A}\right)-s_{A}
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Utility Function

Simple utility function of risk-neutral player A :

$$
\begin{aligned}
& \text { expected loss security investment } \\
U_{A} & =-\grave{L} \cdot P_{\text {loss } A}-s_{A}^{\prime} \\
& =-L+L \cdot\left(1-P_{\text {loss } A}\right)-s_{A}
\end{aligned}
$$

Modified utility function with liability:

$$
\begin{array}{r}
\text { compensation if player } B \text { caused the loss } \\
U_{A}=-L \cdot P_{\text {loss } A}-s_{A}+L \cdot P_{\text {attack } B} \cdot\left(1-s_{B}\right) \\
-L \cdot P_{\text {attack } A} \cdot\left(1-s_{A}\right) \\
\text { compensation if player } A \text { caused the loss }
\end{array}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Modeling interdependent security \quad Liability as means of encouraging security investment
Interdependent Security with Liability

\rightarrow Liability internalizes negative externalities of insecurity
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

Notes

