
Chapter 6

Basic Inference Methods

6.1 Introduction

Example 6.1 (Sleeping patterns of college students).
To illustrate some basic inferential methods, suppose a college instructor

is interested in the sleeping patterns of students in a particular mathematics
class. He has read that the recommended hours of sleep for a teenager is nine
hours each night. That raises several questions:

� Is the median sleeping time for students in this course nine hours?
� If the answer to the first question is no, what proportion of students do

get at least nine hours of sleep in a particular night?
� What is a reasonable estimate of the average number of hours these math

students get per night?

The instructor decides to collect some data from one representative class
to answer these questions. Each student is asked what time he or she got to
bed the previous night, and what time he or she woke up the next morning.
Based on the answers to these questions, the instructor computes the number
of hours of sleep for each of 24 students in his class. The sleeping times are
placed in the vector sleep.

> sleep = c(7.75, 8.5, 8, 6, 8, 6.33, 8.17, 7.75,

+ 7, 6.5, 8.75, 8, 7.5, 3, 6.25, 8.5, 9, 6.5,

+ 9, 9.5, 9, 8, 8, 9.5)

In the next sections, this data is analyzed to investigate the sleeping patterns
of students.
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154 6 Basic Inference Methods

6.2 Learning About a Proportion

6.2.1 Testing and estimation problems

Let M denote the median hours of sleep for the population of students who
take this math course. We are interested in testing the hypothesis H that
M = 9 hours. This testing problem can be restated as a test of a population
proportion. Let p denote the proportion of students who get at least nine
hours of sleep on a particular night. If the population median is M = 9 hours,
then the proportion p = 0.5. So we are interested in testing the hypothesis

H : p = 0.5.

In the event that H is rejected, one typically is interested in learning about
the location of the proportion, and one constructs an interval estimate that
contains p with a given confidence.

6.2.2 Creating group variables by the ifelse function

The relevant data for this hypothesis test is the sample size and the number
of students in the sample who get at least nine hours of sleep. Using the
ifelse function, we define a new variable nine.hours that records for each
observation if the student got at least nine hours of sleep (“yes”) or didn’t
(“no”). Then we tabulate this “yes, no” data by the table function.

> nine.hours = ifelse(sleep >= 9, "yes", "no")

> table(nine.hours)

nine.hours

no yes

19 5

Only five out of 24 students indicated that they had at least nine hours
of sleep. If H is true, the number of yes’s has a binomial(n = 24,p = 0.5)
distribution with mean np and variance np(1 − p). In addition, if n is large,
this variable is approximately normally distributed.

6.2.3 Large-sample test and estimation methods

The traditional test for a proportion is based on the assumption that, when
the population proportion is p = 0.5, the number of yes’s y in a sample of n is
approximately normally distributed with mean n/2 and standard deviation√

n/4. The Z statistic
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Z = y −np√
np(1−p)

,

is approximately standard normal. One computes the statistic zobs from the
sample and one decides whether to accept or reject H by computing the lower
tail probability P (Z ≤ zobs). If the alternative hypothesis is that p < 0.5, the
p-value is equal to the lower tail probability; if the alternative is two-sided
where p 	= 0.5, the p-value is double the lower-tail probability.

This traditional Z test is implemented using the prop.test function. We
first define y to be the number of yes’s and n to be the sample size. In
the prop.test function, we indicate by the p=0.5 argument that we are
testing the hypothesis that the proportion is equal to 0.5, and correct=FALSE

indicates that no continuity correction is used in the calculation of the Z
statistic. The summary of this test is displayed by printing the variable Test.

> y = 5; n = 24

> Test = prop.test(y, n, p=0.5, alternative="two.sided",

+ correct=FALSE)

> Test

1-sample proportions test without continuity correction

data: y out of n, null probability 0.5

X-squared = 8.1667, df = 1, p-value = 0.004267

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.09244825 0.40470453

sample estimates:

p

0.2083333

The variable Test contains all of the calculations of the test and we request
components of Test to obtain specific quantities of interest. A vector of the
names of components is obtained using the names function.

> names(Test)

[1] "statistic" "parameter" "p.value" "estimate" "null.value"

[6] "conf.int" "alternative" "method" "data.name"

The estimate of the proportion p is the sample proportion of students y/n
obtained by asking for the component estimate.

> Test$estimate

p

0.2083333

The component statistic gives the value of the chi-square statistic z2
obs (the

square of the observed Z statistic) and p.value gives the associated p-value.
It is a two-sided p-value since we indicated the alternative was two-sided.

> Test$statistic

X-squared

8.166667

> Test$p.value

[1] 0.004266725
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Since the p-value is close to zero, we have strong evidence to say that the
proportion of “nine hours or greater” sleepers among the students is not 0.5.

In the case where the hypothesis p = 0.5 is rejected, a next step is to
estimate the proportion by a confidence interval. The component conf.int
displays a 95% confidence interval. This particular interval, the Wilson score
interval, is found by inverting the score test for the proportion.

> Test$conf.int

[1] 0.09244825 0.40470453

attr(,"conf.level")

[1] 0.95

We are 95% confident that the interval (0.092, 0.405) contains the proportion
of heavy sleepers.

6.2.4 Small sample methods

One problem with the traditional inference method is that the Z statistic
is assumed to be normally distributed, and the accuracy of this normal ap-
proximation can be poor for small samples. So there are several alternative
inferential methods for a proportion that have better sampling properties
when the sample size n is small.

One “small-sample” method is to adjust the Z for the fact that y is a
discrete variable. In our example, the “continuity-adjusted” Z statistic for
testing the hypothesis H : p = 0.5 is based on the statistic

Zadj = y +0.5−np√
np(1−p)

.

This test is implemented using the prop.test function with the cor-

rect=TRUE argument.

> y = 5; n = 24

> Test.adj = prop.test(y, n, p=0.5, alternative="two.sided",

+ correct=TRUE)

> c(Test.adj$stat, p.value=Test.adj$p.value)

X-squared p.value

7.04166667 0.00796349

Note that we obtain slightly different values of the chi-square test statistic
Z2 and associated p-value. The result of 5 successes in 24 trials is slightly
less significant using this test.

A second alternative testing method is based on the underlying exact bino-
mial distribution. Under the hypothesis H : p = 0.5, the number of successes
y has a binomial distribution with parameters n = 24 and p = 0.5 and the
exact (two-sided) p-value is given by



6.2 Learning About a Proportion 157

2×P (y ≤ 5|p = 0.5).

This procedure is implemented using the function binom.test. The inputs
are the number of successes, the sample size, and the value of the proportion
under the null hypothesis.

> Test.exact = binom.test(y, n, p=0.5)

> c(Test.exact$stat, p.value=Test.exact$p.value)

number of successes p.value

5.000000000 0.006610751

One can check the computation of the p-value using the binomial cumulative
distribution function pbinom. The probability that y is at most 5 is given by
pbinom(5, size=24, prob=0.5) and so the exact p-value is given by

> 2 * pbinom(5, size=24, prob=0.5)

[1] 0.006610751

which agrees with the output of binom.test. One can also obtain the “ex-
act” 95% Clopper-Pearson confidence interval by displaying the component
conf.int.

> Test.exact$conf.int

[1] 0.07131862 0.42151284

attr(,"conf.level")

[1] 0.95

This particular confidence interval is guaranteed to have 95% coverage, but
it can be a bit longer than other computed “95% intervals.”

A third popular “small-sample” confidence interval was developed by
Agresti and Coull [2]. A 95% interval is constructed by simply adding two
successes and two failures to the dataset and then using the simple formula

p̃−1.96se, p̃+1.96se,

where p̃ = (y + 2)/(n + 4) and se is the usual standard error based on the
modified data se =

√
p̃(1− p̃)/(n+4). There is no R function in the base

package that computes the Agresti-Coull interval, but it is straightforward
to write a function to compute this interval. In the user-defined function
agresti.interval below, the inputs are the number of successes y, the sam-
ple size n, and the confidence level.

agresti.interval = function(y, n, conf=0.95){

n1 = n + 4

y1 = y + 2

phat = y1 / n1

me = qnorm(1 - (1 - conf) / 2) * sqrt(phat * (1 - phat) / n1)

c(phat - me, phat + me)

}

After this function has been read into R, one computes the interval for our
data by typing
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> agresti.interval(y, n)

[1] 0.0896128 0.4103872

(The function add4ci in the PropCIs package will also compute the Agresti-
Coull interval.)

We have illustrated three methods for constructing a 95% interval estimate
for a proportion. In the following code, we create a data frame in R that gives
the method, the function for implementing the method, and the lower and
upper bounds for the interval.

> cnames = c("Wilson Score Interval", "Clopper-Pearson",

+ "Agresti-Coull")

> cfunctions = c("prop.test", "binom.test", "agresti.interval")

> intervals = rbind(Test$conf.int, Test.exact$conf.int,

+ agresti.interval(y, n))

> data.frame(Name=cnames, Function=cfunctions,

+ LO=intervals[ , 1], HI=intervals[ , 2])

Name Function LO HI

1 Wilson Score Interval prop.test 0.09244825 0.4047045

2 Clopper-Pearson binom.test 0.07131862 0.4215128

3 Agresti-Coull agresti.interval 0.08961280 0.4103872

In terms of interval length, the shortest interval is the Wilson score interval,
followed in order by the Agresti-Coull interval and the Clopper-Pearson in-
terval. Although it is desirable to have short intervals, one wants the interval
to have the stated 95% coverage probability. In Chapter 13, we will explore
the coverage probability of these three procedures.

6.3 Learning About a Mean

6.3.1 Introduction

In the previous section, we focused on the proportion of students who got at
least nine hours of sleep and learned that this proportion was quite small.
Next it is reasonable to return to the original collection of observed sleeping
times and learn about the mean μ of the population of sleeping times for all
college students.

6.3.2 One-sample t statistic methods

The R function t.test performs the calculations for the traditional inference
procedures for a population mean. If the observations represent a random
sample from a normal population with unknown mean μ, the statistic
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T =
√

n(ȳ −μ)
s

has a t distribution with n − 1 degrees of freedom, where ȳ, s, and n are
respectively the sample mean, sample standard deviation, and sample size.

To illustrate this function, suppose we wish to test the hypothesis that the
mean sleeping time is 8 hours and also construct a 90% interval estimate for
the population mean. Before we use t.test, we should check if it is reasonable
to assume the sleeping times are normally distributed. A histogram of the
times is constructed by the hist function. The qqnorm function produces a
normal probability plot of the times and the qqline function overlays a line
on the plot passing through the first and third quartiles. The resulting graphs
are displayed in Figure 6.1.

> hist(sleep)

> qqnorm(sleep)

> qqline(sleep)
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Fig. 6.1 Histogram and normal probability plot of the sleeping times of college
students.

Looking at the graphs in Figure 6.1, it is clear that there is one unusually
small sleeping time (about 3 hours) that is not consistent with the normal
distribution assumption. There are several ways one could handle this prob-
lem. If there was some mistake in the recording of this particular time, one
could remove the outlier and apply the t methods to the modified data. Al-
ternatively, one could apply a different inferential procedure that rests on a
more general assumption about the distribution of the population. Here we
will illustrate both approaches.
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We identify the position of the outlier by constructing an index plot of the
sleeping times by the plot function. From the display in Figure 6.2, it is clear
that the 14th observation is the outlier, and in further examination, we find
that this observation was incorrectly coded. A new data vector sleep.new is
defined that is the original dataset with the 14th observation deleted.

> plot(sleep)

> sleep.new = sleep[-14]
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Fig. 6.2 Index plot of the sleeping times. This helps identify the outlier as the 14th
observation.

With the outlier removed, the assumption that the data comes from a
normal population seems reasonable, and we can apply the procedures based
on the t distribution. The general form of the t.test function is given by

t.test(x, y=NULL,

alternative=c("two.sided", "less", "greater"),

mu=0, paired=FALSE, var.equal=FALSE,

conf.level=0.95, ...)

For single sample inference, the data is contained in the vector x. We indicate
by the mu argument what value of the population mean is to be tested and the
alternative argument indicates if the alternative hypothesis is two-sided,
less than the population mean value, or greater than the mean value. Also
the conf.level argument indicates the confidence interval for our interval
estimate. In our example, we are interested in testing the hypothesis μ =
8 hours, the alternative is two-sided (the default value), and we wish to
construct a 90% interval. The form of the t.test function is as follows.
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> t.test(sleep.new, mu=8, conf.level=0.90)

One Sample t-test

data: sleep.new

t = -0.4986, df = 22, p-value = 0.623

alternative hypothesis: true mean is not equal to 8

90 percent confidence interval:

7.516975 8.265633

sample estimates:

mean of x

7.891304

The output gives the value of the t-test statistic and the two-sided p-value
for testing the hypothesis that μ = 8. Since the p-value is large, there is
insufficient evidence from the data to conclude the mean sleeping time of
students is not equal to 8 hours. From a frequentist perspective, we are 90%
confident that the interval (7.52, 8.27) contains the mean μ.

6.3.3 Nonparametric methods

If we wish to use the complete sleeping dataset, it would be inappropriate
to use the t procedures due to the single outlier. But there are alternative
inferential procedures we can use based on less restrictive assumptions about
the population of sleeping times. The Wilcoxon signed rank procedure makes
the general assumption that the population is symmetric about a median
M . In this setting, if one wishes to test the hypothesis that the median
sleeping time M = 8 hours, then the test statistic is obtained by ranking
the absolute values of the differences of each sample value from 8, and then
computing the sum of the ranks of the differences that are positive. If the
actual median is different from 8, then the sum of ranks corresponding to
the positive differences will be unusually small or large, so one rejects the
hypothesis in the tail region of the null distribution of the Wilcoxon statistic.

The Wilcoxon signed rank method is implemented as wilcox.test with
the following general syntax.

wilcox.test(x, y=NULL,

alternative=c("two.sided", "less", "greater"),

mu=0, paired=FALSE, exact=NULL, correct=TRUE,

conf.int=FALSE, conf.level=0.95, ...)

The arguments are similar to those in t.test. The vector x is the sample of
observations, the constant mu is the value to be tested, and the alternative
argument indicates the direction of the alternative hypothesis. By indicating
conf.int = TRUE, one can have the function compute the Wilcoxon signed-
rank interval estimate for the median and conf.level indicates the desired
probability of coverage.
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We can test the hypothesis M = 8 with a two-sided alternative and obtain
a 90% interval estimate for the median of sleeping times (with the original
dataset) using the command

> W = wilcox.test(sleep, mu=8, conf.int=TRUE, conf.level=0.90)

Warning messages:

1: In wilcox.test.default(sleep, mu = 8, conf.int = TRUE, conf.level = 0.9) :

cannot compute exact $p$-value with ties

> W

Wilcoxon signed rank test with continuity correction

data: sleep

V = 73.5, p-value = 0.3969

alternative hypothesis: true location is not equal to 8

90 percent confidence interval:

7.124979 8.374997

sample estimates:

(pseudo)median

7.749961

We see that a warning message is produced when we execute this function.
For small samples (such as this one), the wilcox.test will compute exact p-
values and interval estimates, but these exact methods cannot be used when
there are ties in the dataset. When there are ties, as in this sample of sleeping
times, the function will give p-values and interval estimates based on a normal
approximation to the signed-rank statistic.

Using the names function, one can see the names of the components of the
object producted by the wilcox.test function.

> names(W)

[1] "statistic" "parameter" "p.value" "null.value" "alternative"

[6] "method" "data.name" "conf.int" "estimate"

The statistic component gives the value of the Wilcoxon test statistic,
the p.value component gives the (two-sided, in this case) p-value and the
conf.int component contains the interval estimate.

> W$statistic

V

73.5

> W$p.value

[1] 0.3968656

> W$conf.int

[1] 7.124979 8.374997

attr(,"conf.level")

[1] 0.9

Comparing with the output from t.test, both the t and Wilcoxon methods
indicate insufficient evidence that the “average” sleeping time from the popu-
lation is not 8 hours. The 90% Wilcoxon interval estimate for the population
median is wider than the t interval estimate for the population mean.
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6.4 Two Sample Inference

6.4.1 Introduction

Example 6.2 (The twins dataset (continued)).
A basic inferential problem is to compare the locations of two continuous-

valued populations. To illustrate different “two-sample”methods, we consider
data from Ashenfelter and Krueger [3] who were interested in relating people’s
education and income. It can be difficult to learn about the effect of education
on income since there are many variables associated with income, such as a
person’s natural ability, his family background, and his innate intelligence. To
control for possible confounding variables, the authors collected information
on education, income, and background from a group of twins. Since twins have
similar family backgrounds, they provide a useful control for confounding
variables in this problem. (This particular dataset was previously used in
Chapter 3 to illustrate statistical methods for categorical data.)

The datafile twins.txt contains information about 183 pairs of twins for
sixteen variables. We read the data into R by the read.table function and
store the data frame in the variable twins.

> twins = read.table("twins.txt", header=TRUE)

Each pair of twins was randomly assigned the labels “twin 1” and “twin 2.”
The variable HRWAGEH gives the hourly wage for twin 2. If one graphs the
wages, one finds that they are strongly right-skewed and one can remove the
skewness by a log transformation; the variable log.wages contains the log
wages.

> log.wages = log(twins$HRWAGEH)

6.4.2 Two sample t-test

The variable EDUCH contains the self-reported education of twin 2 in years.
Suppose one is interested in comparing the log wages of the “high school”
twins with 12 or fewer years of education with the log wages of the “college”
twins with more than 12 years of education. We define a new categorical
variable college using the ifelse function that is “yes” or “no” depending
on the years of education.

> college = ifelse(twins$EDUCH > 12, "yes", "no")

A first step in comparing the log wages of the two groups is to construct
a suitable graph and Figure 6.3 displays parallel boxplots of the log wages
using the boxplot function. Both groups of log wages look approximately
symmetric with similar spreads and the median log wage of the college twins
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appears approximately 0.5 larger than the median log wage of the high school
twins.

> boxplot(log.wages ~ college, horizontal=TRUE,

+ names=c("High School", "Some College"), xlab="log Wage")
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Fig. 6.3 Parallel boxplots of the log wages for the high school and college twins.

Let μH and μC denote respectively the mean log wage of the population of
high school twins and college twins. The standard t-test of the hypothesis H
that μH = μC is implemented by the function t.test. The argument has the
form log.wages ∼ college where the log.wages is the continuous response
variable and college categorizes the response into two groups.

> t.test(log.wages ~ college)

Welch Two Sample t-test

data: hs.log.wages and college.log.wages

t = -2.4545, df = 131.24, p-value = 0.01542

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.42999633 -0.04620214

sample estimates:

mean in group no mean in group yes

2.282119 2.520218

From the output, we see that:

� The value of the t-test statistic is −2.4545.
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� Using the Welch procedure for unequal population variances, the t statistic
is approximately distributed as t with 131.24 degrees of freedom under the
assumption of equal population means.

� The two-sided p-value is 0.01542, so there is significant evidence that the
means are different.

� The 95% confidence interval for the difference in means μH − μC is
(−0.430,−0.046).

The traditional t-test for the difference of means assumes the population
variances are equal. One can implement this traditional test using the
var.equal=TRUE argument.

> t.test(log.wages ~ college, var.equal=TRUE)$p.value

[1] 0.01907047

In this example, the Welch test and the traditional t-test give approximately
the same p-value.

6.4.3 Two sample Mann-Whitney-Wilcoxon test

A nonparametric alternative to the two-sample test is the Mann-Whitney-
Wilcoxon test. One tests the general hypothesis that two independent samples
come from the same continuous population. If one denotes the two samples
as x and y, the test statistic is equal to

W = the number of pairs (xi,yj) where xi > yj.

This method is implemented using the wilcox.test function with the same
argument format (response by grouping variable) as the t.test function.

> wilcox.test(log.wages ~ college, conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: hs.log.wages and college.log.wages

W = 2264, p-value = 0.01093

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.44266384 -0.06455011

sample estimates:

difference in location

-0.2575775

The value of the W statistic for our dataset is 2264. The two-sided probability
of getting a value as extreme as 2264 if the two samples come from the
same continuous population is 0.01093. This p-value is very close to the value
obtained using the two-sample t-test.
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By specifying the argument option conf.int = TRUE, wilcox.test will
also display a 95% confidence interval for the difference of location parame-
ters of the two populations. Comparing the output of wilcox.test with the
output of t.test, we see this confidence interval is similar to the interval for
the difference of population means.

6.4.4 Permutation test

Another testing procedure for comparing two independent samples is a per-
mutation test. As before, we define a variable log.wages that contains the
log wages for the first twin and a vector college that indicates if the first
twin had some college education or not.

> log.wages = log(twins$HRWAGEH)

> college = ifelse(twins$EDUCH > 12, "yes", "no")

Using the table function, we see that there are 112 college and 71 no-
college twins in our sample.

> table(college)

college

no yes

71 112

Consider the hypothesis that college education has no impact on the wages
of the twins. Under this hypothesis, the labeling of the twins into the college
and no-college categories is not helpful in understanding the variability of
the log wages. In this case, the distribution of any test statistic, say the t-
test, will be unchanged if we arbitrarily change the labels of the twins in the
college/no-college classification. One obtains an empirical distribution of the
test statistic under the null hypothesis by

� Randomly allocating the 71 college and 112 no-college labels among the
183 twins.

� Computing the value of the test statistic for the randomly permuted data.
� Repeating this process a large number of iterations.

The collection of test statistics provides an estimate of the sampling distribu-
tion of the statistic when the null hypothesis is true. (Figure 6.4 is a picture
of this sampling distribution.) The observed value of the test statistic (for
our original sample) is then compared to the distribution of the permutation
replicates. To make this comparison, one computes the probability that the
test statistic under the randomization distribution is at least as extreme as
the observed statistic. If this p-value is sufficiently small, this gives evidence
against the assumption that the labeling of the twins into the two groups is
not informative.
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This testing procedure is straightforward to program by writing a short
function. The function resample is written which randomly permutes the
college labels (using the sample function) and returns the value of the t-test
statistic from the t.test function.

> resample = function()

+ t.test(log.wages ~ sample(college))$statistic

One repeats resample using the replicate function. There are two argu-
ments to replicate, the number of iterations and the name of the function
to be replicated. The values of the t statistic from the 1000 iterations is stored
in the vector many.T.

> many.T = replicate(1000, resample())

The value of the t statistic from the observed data is obtained by the t.test
function using the labels from the vector college.

> T.obs = t.test(log.wages ~ college)$statistic

> T.obs

t

-2.454488

To see if the observed test statistic of −2.45 is extreme, we use the hist

function to construct a histogram of the t statistics from the randomized
distribution in Figure 6.4. We use the abline function to add a vertical line
at the observed t statistic.

> hist(many.T)

> abline(v=T.obs)

The (two-sided) p-value is twice the probability of obtaining a t statistic
smaller than T.obs.

> 2 * mean(many.T < T.obs)

[1] 0.024

This computed p-value from the permutation test is similar to the values
computed using the t-test and Wilcoxon procedures.

6.5 Paired Sample Inference Using a t Statistic

In the above analysis, we were comparing the wages of two groups of people
with different educational levels. It is difficult to get precise estimates of the
effect of education on wage since there are many other confounding variables
such as family background, natural ability, and innate intelligence that may
also explain the differences between the two groups. This particular study
took a sample of twins. By considering the wages of twins who differ in edu-
cational level but are similar with respect to other important variables such
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Fig. 6.4 Simulated randomization distribution of the two sample t statistic under
the null hypothesis in the permutation test. The vertical line gives the location of the
observed t statistic.

as intelligence and family background, one might more accurately estimate
the effect of education. Here we illustrate methods of comparing two means
from paired data.

In the dataframe twins, the variables EDUCL and EDUCH give the educa-
tional levels for twin 1 and twin 2. We first create a new data frame consist-
ing only of the twins with different educational levels. This new data frame
twins.diff is created using the subset function.

> twins.diff = subset(twins, EDUCL != EDUCH)

(The != symbol means“not equal.”) Since there are twins with missing values
of educational level, we use the complete.cases function to remove any rows
from the dataframe where any of the variables contain a NA code.

> twins.diff = twins.diff[complete.cases(twins.diff), ]

For these twins with different educational levels, we let log.wages.low

be the log hourly wage for the twin with the lower educational level and
log.wages.high the log hourly wage for the twin with the higher educa-
tional level. We compute these new variables using of the ifelse function.
For example, if the condition EDUCL < EDUCH is true, then log.wages.low

will be equal to log(HRWAGEL); otherwise log.wages.low will be equal to
log(HRWAGEH). A similar conditional expression is used to compute the vari-
able log.wages.high.

> log.wages.low = with(twins.diff,

+ ifelse(EDUCL < EDUCH, log(HRWAGEL), log(HRWAGEH)))
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> log.wages.high = with(twins.diff,

+ ifelse(EDUCL < EDUCH, log(HRWAGEH), log(HRWAGEL)))

When we are done with this data cleaning, we have data on log wages
for 75 pairs of twins. We combine the twins data by the cbind function and
display the log wages for the first six pairs of twins using of the head function.

> head(cbind(log.wages.low, log.wages.high))

log.wages.low log.wages.high

1 2.169054 2.890372

2 3.555348 2.032088

3 2.484907 2.708050

4 2.847812 2.796061

5 2.748872 3.218876

6 2.079442 2.708050

Let μL and μH denote respectively the mean log wages for the twins with
the lower and higher educational levels. Due to the paired design, one can
perform a test for the difference in means d = μL − μH by working with
the single sample of paired differences log.wages.low - log.wages.high.
We use the hist function to construct a histogram of the paired differences
in Figure 6.5. Since the paired differences in log wages look approximately
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Fig. 6.5 Histogram of the paired differences to see the effect of education on log
wages.

normal, it is reasonable to apply a t-test on the differences by the t.test

function. To construct a test based on the paired differences, the argument
option paired = TRUE is used.
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> t.test(log.wages.low, log.wages.high, paired=TRUE)

Paired t-test

data: log.wages.low and log.wages.high

t = -4.5516, df = 74, p-value = 2.047e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.3930587 -0.1537032

sample estimates:

mean of the differences

-0.2733810

Here the observed difference in means is clearly statistically significant and a
95% confidence interval for the difference is (−0.393,−0.154). In an exercise,
one will be asked to rerun the t.test function on this dataset without using
the paired = TRUE option and comment on the difference in the confidence
intervals for the difference in means using the two options.

Exercises

6.1 (Gender of marathoners). In 2000, the proportion of females who
competed in marathons in the United States was 0.375. One wonders if the
proportion of female marathoners has changed in the ten-year period from
2000 to 2010. One collects the genders of 276 people who competed in the
2010 New York City Marathon – in this sample, 120 were women.

a. If p denotes the proportion of 2010 marathoners who are female, use the
prop.test function to test the hypothesis that p = 0.375. Store the calcu-
lations of the test in the variable Test.

b. From the components of Test, construct a 95% interval estimate for p.
c. Using the function binom.test, construct an exact-test of the hypothesis.

Compare this test with the large-sample test used in part (a).

6.2 (Ages of marathoners). The datafile “nyc.marathon.txt” contains the
gender, age, and completion time (in minutes) for 276 people who completed
the 2010 New York City Marathon. It was reported that the mean ages of
men and women marathoners in 2005 were respectively 40.5 and 36.1.

a. Create a new dataframe “women.marathon” that contains the ages and
completion times for the women marathoners.

b. Use the t.test function to construct a test of the hypothesis that the
mean age of women marathoners is equal to 36.1.

c. As an alternative method, use the wilcox.test function to test the hy-
pothesis that the median age of women marathoners is equal to 36.1. Com-
pare this test with the t-test used in part (b).

d. Construct a 90% interval estimate for the mean age of women marathoners.
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6.3 (Ages of marathoners, continued). From the information in the 2005
report, one may believe that men marathoners tend to be older than women
marathons.

a. Use the t.test function to construct a test of the hypothesis that the mean
ages of women and men marathoners are equal against the alternative
hypothesis that the mean age of men is larger.

b. Construct a 90% interval estimate for the difference in mean ages of men
and women marathoners.

c. Use the alternative Mann-Whitney-Wilcoxon test (function wilcox.test)
to test the hypothesis that the ages of the men and ages of the women come
from populations with the same location parameter against the alternative
that the population of ages of the men have a larger location parameter.
Compare the result of this test with the t-test performed in part (a).

6.4 (Measuring the length of a string). An experiment was performed
in an introductory statistics class to illustrate the concept of measurement
bias. The instructor held up a string in front of the class and each student
guessed at the string’s length. The following are the measurements from the
24 students (in inches).

22 18 27 23 24 15 26 22 24 25 24 18

18 26 20 24 27 16 30 22 17 18 22 26

a. Use the scan function to enter these measurements into R.
b. The true length of the string was 26 inches. Assuming that this sample of

measurements represents a random sample from a population of student
measurements, use the t.test function to test the hypothesis that the
mean measurement μ is different from 26 inches.

c. Use the t.test function to find a 90% confidence interval for the popula-
tion mean μ.

d. The t-test procedure assumes the sample is from a population that is
normally distributed. Construct a normal probability plot of the measure-
ments and decide if the assumption of normality is reasonable.

6.5 (Comparing snowfall of Buffalo and Cleveland). The datafile “buf-
falo.cleveland.snowfall.txt” contains the total snowfall in inches for the cities
Buffalo and Cleveland for the seasons 1968-69 through 2008-09.

a. Compute the differences between the Buffalo snowfall and the Cleveland
snowfall for all seasons.

b. Using the t.test function with the difference data, test the hypothesis
that Buffalo and Cleveland get, on average, the same total snowfall in a
season.

c. Use the t.test function to construct a 95% confidence interval of the
mean difference in seasonal snowfall.



172 6 Basic Inference Methods

6.6 (Comparing Etruscan and modern Italian skulls). Researchers
were interested if ancient Etruscans were native to Italy. The dataset“Etruscan-
Italian.txt” contains the skull measurements from a group of Etruscans and
modern Italians. There are two relevant variables in the dataset: x is the skull
measurement and group is the type of skull.

a. Assuming that the data represent independent samples from normal dis-
tributions, use the t.test function to test the hypothesis that the mean
Etruscan skull measurement μE is equal to the mean Italian skull mea-
surement μI .

b. Use the t.test function to construct a 95% interval estimate for the dif-
ference in means μE −μI .

c. Use the two-sample Wilcoxon procedure implemented in the function
wilcox.test to find an alternative 95% interval estimate for the difference
μE −μI .

6.7 (President’s heights). In Example 1.2, the height of the election winner
and loser were collected for the U.S. Presidential elections of 1948 through
2008. Suppose you are interested in testing the hypothesis that the mean
height of the election winner is equal to the mean height of the election loser.
Assuming that this data represent paired data from a hypothetical population
of elections, use the t.test function to test this hypothesis. Interpret the
results of this test.
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