Chapter 3
Categorical data

3.1 Introduction

In this chapter, we introduce R commands for organizing, summarizing, and
displaying categorical data. We will see that categorical data is conveniently
expressed by a special R object called a factor. The table function is use-
ful in constructing frequency tables and the plot and barplot functions are
useful in displaying tabulated output. The chi-square goodness-of-fit test for
assessing if a vector of counts follows a specified discrete distribution is imple-
mented in the chisq.test function. The cut function is helpful in dividing a
numerical value into a categorical variable using a vector of dividing values.
The table function with several variables can be used to construct a two-
way frequency table and the prop.table function can be used to compute
conditional proportions to explore the association pattern in the table. Side-
by-side and segmented bar charts of conditional probabilities are constructed
by the barplot function. The hypothesis of independence in a two-way ta-
ble can be tested by the chisq.test function. A special graphical display
mosaicplot can be used to display the counts in a two-way frequency table
and, in addition, show the pattern of residuals from a fit of independence.

3.1.1 Tabulating and plotting categorical data

Ezample 3.1 (Flipping a coin).
To begin, suppose we flip a coin 20 times and observe the sequence

H,T,H.HT,HHTHHTTHTTTHHHT.

We are interested in tabulating these outcomes, finding the proportions of
heads and tails, and graphing the proportions.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3_3, 79
© Springer Science+Business Media, LLC 2012



80 3 Categorical data

A convenient way of entering these data in the R console is with the scan
function. One indicates by the what=character argument that character-type
data will be entered. By default, this function assumes that “white space” will
be separating the individual entries. We complete entering the outcomes by
pressing the Enter key on a blank line. The character data is placed in the
vector tosses.

> tosses = scan(what="character")
1: HTHHTHHTHHTT

13: HTTT

17: HHHT

21:

Read 20 items

We can tabulate this coin flipping data using the table function. The
output is a table of frequencies of the different outcomes, H and T.

> table(tosses)

tosses
H T
11 9

We see that 11 heads and 9 tails were flipped. To summarize these counts,
one typically computes proportions or relative frequencies. One can obtain
these proportions by simply dividing the table frequencies by the number of
flips using the length function.

> table(tosses) / length(tosses)

tosses
H T
0.55 0.45

There are several ways of displaying these data. First, we save the relative
frequency output in the variable prop.tosses:

> prop.tosses = table(tosses) / length(tosses)
Using the plot method, we obtain a line graph displayed in Figure 3.1(a).

> plot(prop.tosses)

Alternately, one can display the proportions by a bar graph using the barplot
function shown in Figure 3.1(b).

> barplot (prop.tosses)

The line graph and bar graph both give the same general impression that we
obtained similar counts of heads and tails in this coin-tossing experiment.
3.1.2 Character vectors and factors

In the previous section, we illustrated the construction of a character vector
which is a vector of string values such as “H” and “T.” When one has a vector
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Fig. 3.1 Two displays of the proportions of heads and tails from 20 flips of a coin.

consisting of a small number of distinct values, either numerical or character,
a factoris a useful way of representing this vector. To define a factor, we start
with a vector of values, a second vector that gives the collection of possible
values, and a third vector that gives labels to the possible values.

Ezample 3.2 (Rolling a die).
As a simple example, suppose we wish to collect several rolls of a die. We
observe seven rolls of the die and save the rolls in the vector y.

>y=-c, 4, 3,5, 4, 2, 4
For die rolls, we know that the possible rolls are 1 through 6 and we store
these in the vector possible.rolls:

> possible.rolls = c(1, 2, 3, 4, 5, 6)

We wish to label the rolls by the words “one”, ..., “six” — we place these labels
in the vector labels.rolls:

> labels.rolls = c("one", "two", "three", "four", "five", "six")

We now are ready to construct the factor variable fy using the function
factor:

> fy = factor(y, levels=possible.rolls, labels=labels.rolls)

By displaying the vector fy, we see the difference between a character
vector and a factor.
> fy

[1] one four three five four two four
Levels: one two three four five six
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Note that the numerical roll values in y have been replaced by the factor labels
in fy. Also, note that the display of the factor variable shows the levels, the
possible values of the die roll. Suppose we construct a frequency table of the
factor.

> table(fy)
fy
one two three four five six
1 1 1 3 1 0

Note that frequencies of all possible rolls of the die are displayed. In many
situations, we wish to display the frequencies of categories such as “six” that
are possible but have not been observed.

In the example to follow, a datafile is read that contains a character vari-
able. When a data frame is created in R (say, using the read.table function),
by default all variables consisting of character values are automatically con-
verted to factors.

3.2 Chi-square Goodness-of-Fit Test

Ezample 3.3 (Weldon’s dice).

“Weldon’s Dice” is a famous data set published in Karl Pearson’s 1900
paper [39] that introduced the chi-square goodness-of-fit test. At that time
(before electronic computers) the English biologist Walter F. R. Weldon used
dice to generate random data, recording the results of 26,306 rolls of 12
dice. See “Weldon’s Dice, Automated” [29] for more details and results of an
automated version of the experiment.

In the results, Weldon considered five or six dots showing among the 12
dice to be “successes” and other results “failures.” If a single die is fair, then
each face is equally likely to occur, so that the probability of a success (five
or six) is 1/3. The total number of successes among 12 fair dice is a binomial
random variable with success probability 1/3. The binomial probabilities are
given by the dbinom function:

> k
>p

0:12
dbinom(k, size=12, prob=1/3)

In 26,306 rolls of 12 fair dice, the expected outcomes (rounded to the nearest
integer) would be:

> Binom = round(26306 * p)
> names(Binom) = k

Labels for the binomial counts were applied with the names function. The
“Weldon’s Dice” data are entered below.
> Weldon = c(185, 1149, 3265, 5475, 6114, 5194, 3067,

+ 1331, 403, 105, 14, 4, 0)
> names(Weldon) = k
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The binomial counts, data, and deviations between the binomial and ob-
served counts can be summarized for display several ways; here we use the
data.frame function. To combine data in a data frame we simply list the data
vectors separated by commas. Here we also assigned a name “Dift” for the
difference between the observed (Weldon) and expected (binomial) counts.

> data.frame(Binom, Weldon, Diff=Weldon - Binom)
Binom Weldon Diff

203
1216
3345
5576
6273
5018
2927
1255

392

87
13
1
0
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A visual comparison of the observed and expected counts can be made in
several ways. To display the two bar plots of frequencies side by side we
combine our data into a matrix using cbind and specify beside=TRUE in the

185
1149
3265
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1331
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0

barplot function.

> counts

Fig. 3.2 Bar plots of expected and observed frequencies in Weldon dice example.

cbind(Bin, Weldon)
> barplot(counts, beside=TRUE)

1000 2000 3000 4000 5000 6000

0

Binom Weldon
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The barplots in Figure 3.2 appear to agree approximately. For a compar-
ison of observed and fitted data, however, it is somewhat easier to interpret
the data on a single plot. Another possible plot for comparing the observed
and expected counts is produced by:
> plot(k, Binom, type="h", lwd=2, lty=1, ylab="Count")
> lines(k + .2, Weldon, type="h", lwd=2, lty=2)
> legend(8, 5000, legend=c("Binomial", "Weldon"),

+ lty=c(1,2), 1lwd=c(2,2))

The extra arguments for plotting the binomial counts are type="h" (plot
vertical lines like a barplot), lwd=2 (line width is doubled), and 1ty=1 (choose
a solid line type). The lines function is used to overlay vertical lines for the
corresponding observed counts. These lines are drawn slightly to the right of
the expected count lines by adding a small value of 0.2 to the variable k and
drawn using the alternative line type 1ty=2. This plot is shown in Figure 3.3.
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Fig. 3.3 Line plot of expected and observed frequencies in Weldon dice example.

A chi-square goodness-of-fit test can be applied to test whether the data
are consistent with the ‘fair dice’ binomial model. However, as we learn in
basic statistics, the expected cell counts should be large — say, at least 5 for
all cells. For a chi-square test we should collapse the categories corresponding
to 10, 11, and 12 successes into a single category. This is accomplished with
the following code.

> cWeldon = c(Weldon[1:10], sum(Weldon[11:13]))
> cWeldon
0 1 2 3 4 5 6 7 8 9
185 1149 3265 5475 6114 5194 3067 1331 403 105 18
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One can now apply a chi-square goodness-of-fit test. We find the binomial
probabilities for the first nine categories using the vector of probabilities
stored in p. The sum of probabilities must equal 1, and this determines the
probability for the final category. We use the chisq.test function to test the
null hypothesis that the true model is binomial.

> probs = c(p[1:10], 1 - sum(p[1:10]))

> chisq.test(cWeldon, p=probs)
Chi-squared test for given probabilities

data: cWeldon
X-squared = 35.4943, df = 10, p-value = 0.0001028

The test computes a p-value of less than 0.001. Therefore, we conclude the ex-
perimental results that Weldon obtained are not consistent with the binomial
model.

To better understand why the test rejects the binomial model, it is helpful
to examine the Pearson residuals defined by

observed — expected

vexpected

where observed and expected denote respectively the observed and expected
counts in a particular cell. To obtain these residuals, we save the results of the
chi-square test in the variable test and the component residuals contains
the vector of residuals. Using the plot function, we display the residuals as
a function of k and overlay (using the abline function) a horizontal line at
Z€ro.

residual =

> test = chisq.test(cWeldon, p=probs)
> plot(0:10, test$residuals,

+  xlab="k", ylab="Residual")

> abline(h=0)

We see from Figure 3.4 that the observed Weldon counts are smaller than
the binomial expected for values of k four or smaller, and larger than the

expected counts for values of k larger than 4. One possible explanation for
this conclusion is that the dice are not perfectly balanced.

3.3 Relating Two Categorical Variables

3.3.1 Introduction

Ezample 3.4 (The twins dataset).

Ashenfelter and Krueger [3] describe an interesting study to address the
question “how much will an additional year of schooling raise one’s in-
come?” There are several difficulties in learning about the relationship be-
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Residual

Fig. 3.4 Graph of the Pearson residuals from the chi-square test for the Weldon
example.

tween schooling and income. First, there are many variables besides school-
ing that relate to a person’s income such as gender, socioeconomic status,
and intelligence, and it is difficult to control for these other variables in this
observational study. Second, it can be difficult to obtain truthful informa-
tion about a person’s schooling; people are more likely to report a higher
level than they actually attain. The errors in obtaining actual educational
levels can lead to biased estimates of the relationship between schooling and
income. To address these concerns, these researchers interviewed twins, col-
lecting information about income, education, and other background variables.
Monozygotic twins (twins from one egg) have identical family backgrounds
and they provide a good control for confounding variables. Also information
about a person’s education was obtained from a twin (self-reported) and also
from his/her twin (cross-reported). By having two education measurements,
one is able to estimate the bias from not getting a truthful response.

3.3.2 Frequency tables and graphs

We illustrate several statistical methods for categorical variable as a prelim-
inary exploration of this twins dataset. We begin by reading in the dataset
twins.dat.txt and storing it in the data frame twn:

> twn = read.table("twins.dat.txt", header=TRUE,
+ sep=",", na.strings=".")
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There were 183 pairs of twins who were interviewed in this study. In each pair
of twins, one twin was randomly assigned to “twin 1” and the other is called
“twin 2.” The variables EDUCL and EDUCH give the self-reported education (in
years) for twin 1 and twin 2. (In the variable definition, the last letter of “L”
refers to twin 1 and “H” refers to twin 2.) We can obtain frequency tables of
the education years of the twins by two applications of the table function.

> table(twn$EDUCL)

8 10 11 12 13 14 15 16 17 18 19 20

1 4 16121301137 110 3 3
> table (twn$EDUCH)

8 9 10 11 12 13 14 15 16 17 18 19 20
2 1 2 16522221533 211 2 b5

The education years for both twins show much variation and the year values
with large frequencies are 12, corresponding to a high school degree, and 16,
corresponding to a college degree.

Since there are so many educational year values, it is useful to categorize
this variable into a smaller number of more meaningful levels. Suppose we
say that a person’s educational level is “high school” if he/she has 12 years of
education, “some college” if the years are between 13 and 15, “college degree”
for 16 years, and “graduate school” if the years are greater than 16. The cut
function is very helpful for creating these new categories. In cut, the first
argument is the variable to be changed, the argument breaks is a vector
defining the breakpoints for the categories, and the argument labels is a
character vector with the labels for the new categories. We use this function
twice, once for twin 1’s educational years and again for twin 2’s educational
years.
> c.EDUCL = cut(twn$EDUCL, breaks=c(0, 12, 15, 16, 24),

+  labels=c("High School", "Some College", "College Degree",

"Graduate School"))

c.EDUCH = cut (twn$EDUCH, breaks=c(0, 12, 15, 16, 24),

labels=c("High School", "Some College", "College Degree",
"Graduate School"))

+ 4+ Vv o+

We tabulate the the educational levels for twin 1 using the table function,
find relative frequencies by the prop.table function, and construct a bar
graph of the relative frequencies using the barplot function. The resulting
graph is shown in Figure 3.5. We see that approximately 70% of the first
twins fall within the high school or some college levels.

> table(c.EDUCL)

c.EDUCL
High School Some College College Degree Graduate School
67 62 37 17
> prop.table(table(c.EDUCL))
c.EDUCL
High School Some College College Degree Graduate School
0.36612022 0.33879781 0.20218579 0.09289617

> barplot(prop.table(table(c.EDUCL)))
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Fig. 3.5 Bar graph of the educational levels for the first twin in the twins study

An alternative graphical display of table counts, a mosaic plot, is con-
structed using the function mosaicplot. In this display (shown in Figure
3.6), the total count, represented by a solid rectangle, is divided into verti-
cal regions corresponding to the counts for the different educational levels.
(Friendly [17] gives some history of this display.) Both the mosaic plot and the
bar graph tell the same story — most of the first twins are in the high school
and some college categories — but we will shortly see that the mosaic plot
is especially helpful when we classify people with respect to two categorical
variables.

> mosaicplot (table(c.EDUCL))

3.3.3 Contingency tables

The exploration of years of schooling in the previous section raises an interest-
ing question. Is the educational level of twin 1 related to the educational level
for twin 27 One can answer this question by constructing a contingency table
of the educational levels for the two twins. This is easily constructed by the
table function with the two variables c.EDUCL and c.EDUCH as arguments.

> table(c.EDUCL, c.EDUCH)
c.EDUCH
c.EDUCL High School Some College College Degree Graduate School
High School 47 16 2 2
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table(c.EDUCL)

High School Some College College Degree Graduate School

c.EDUCL

Fig. 3.6 Mosaic plot of the educational levels for the first twin in the twins study

Some College 18 32 8 4
College Degree 5 10 18 4
Graduate School 1 1 5 10

Note from the contingency table that there are large counts along the
diagonal of the table where the twins have the same self-reported educational
levels. What proportion of twins have the same level? We store the table in
the variable T1 and extract the diagonal counts using the diag function:

> Ti=table(c.EDUCL, c.EDUCH)
> diag(T1)
High School Some College College Degree Graduate School
a7 32 18 10

We can compute the proportion of “same educational level” twins by two
applications of the sum function, one on the vector of diagonal elements, and
a second on the entire table.

> sum(diag(T1)) / sum(T1)
[1] 0.5846995

We see that about 58% of the twins have the same educational level.
One can graphically display the table by a mosaic plot constructed using
the plot method for a table. (See Figure 3.7.)

> plot(T1)
This display is constructed in a two-step process. As in the first example,

one first partitions a grey square into vertical bars where the widths of the
bars correspond to the educational level counts for twin 1. Then each of the
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vertical bars is divided into pieces where the heights of the pieces correspond
to the education counts for the second twin. The areas of the regions in the
mosaic plot correspond to the counts in the contingency table. Observe from
Figure 3.7 that the two largest areas correspond to the “high school, high
school” and “some college, some college” counts. This means that most of the
twins either both had a high school or both had “some college” background.

T

High School Some College College Degree Graduate School

[n[n

High School

c.EDUCH

ndegenBoyresSome College

[

c.EDUCL

/]

1

Fig. 3.7 Mosaic plot of the educational levels for the twins in the twins study.

3.4 Association Patterns in Contingency Tables

3.4.1 Constructing a contingency table

The purpose of the twins study was to explore the relationship of educational
level with salary. We do some initial exploration by focusing on the data for
the first twin. The variable HRWAGEL contains the hourly wage (in dollars). If
one graphs the hourly wages by say, a histogram, one will observe the shape
of the wages is right-skewed. We divide the wages into four groups using the
cut function with break points 0, 7, 13, 20, and 150. We chose these break
points so we would have roughly the same number of twins in each class
interval. We assign the categorized wage to the variable c.wage.

> c.wage = cut(twn$HRWAGEL, c(0, 7, 13, 20, 150))

We construct a frequency table of the categorized wage by the table function.
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> table(c.wage)
c.wage
(0,71 (7,13] (13,20] (20,150]
47 58 38 19

There were 21 twins who did not respond to the wage question, so there were
183 — 21 = 162 recorded wages.

To investigate the relationship of education with salary, we construct a
two-way contingency table by another application of table; the first variable
will appear as rows in the table and the second variable as columns.

> table(c.EDUCL, c.wage)

c.wage

c.EDUCL (0,71 (7,131 (13,201 (20,150]
High School 23 21 10 1
Some College 15 23 12 5
College Degree 7 12 14 3
Graduate School 2 2 2 10

We see that there were 23 people with a high school educational level and
who are earning $7 or less per week, there were 21 people with a high school
level and who are earning between $7 and $13 per week, and so on.

To quantify the relationship between education and salary, one can com-
pute the proportion of different wage categories (column) for each educational
level (row). This can be done using the prop.table function. The arguments
are the table and the margin; if we use margin = 1, the proportions of each
row of the table will be computed, and margin = 2 the proportions of each
column will be computed. Since we wish to compute proportions of different
wages for each educational level, we first save the table in the variable T2,
and use prop.table with arguments T2 and margin = 1.

> T2 = table(c.EDUCL, c.wage)
> prop.table(T2, margin=1)
c.wage

c.EDUCL (0,71 (7,13] (13,20] (20,150]
High School 0.41818182 0.38181818 0.18181818 0.01818182
Some College 0.27272727 0.41818182 0.21818182 0.09090909
College Degree 0.19444444 0.33333333 0.38888889 0.08333333
Graduate School 0.12500000 0.12500000 0.12500000 0.62500000

Of the high school students, we see from the table that 42% earned between
0 and $7, 32% earned between $7 and $13, and 18% earned between $13
and $20. Likewise, the table shows the proportions of students earning the
different wage categories for each of the “Some College,” “College Degree,”
and “Graduate School” educational levels.



92 3 Categorical data

3.4.2 Graphing patterns of association

There are several useful graphs for displaying the conditional proportions in
this contingency table. One way of displaying a proportion vector is a seg-
mented bar chart where one divides a single bar into regions where the region
areas correspond to the proportions. The barplot function, when applied to
a matrix, will construct segmented bar charts for the column vectors of the
matrix. If P denotes the variable containing our proportion matrix, we are
interested in graphing the row (not column) vectors of P. So we first take the
transpose of P (using the t function) and then apply the barplot function.
We add several arguments in this function: we add a label of “PROPOR-
TION” along the y-axis, and add a legend that indicates the color of each of
the four wage categories. The resulting display is shown in Figure 3.8.

> P = prop.table(T2, 1)

> barplot(t(P), ylim=c(0, 1.3), ylab="PROPORTION",

+  legend.text=dimnames(P)$c.wage,
+ args.legend=list(x = "top"))

Note the areas of the lighter colored regions, corresponding to higher wages,
get larger from left to right, indicating that higher educational levels have
higher wages.

(20,150]
(13,20]
(7,13]
(Uy]

|
EEOO

PROPORTION

High School Some College  College Degree ~ Graduate School

Fig. 3.8 Segmented bar chart of the wage categories for people in four educational
levels.

Another useful display are side-by-side barplots, where the proportions
for a single educational level are displayed as a bar chart. This display is
constructed using the barplot using the beside=TRUE argument; see Figure
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3.9. As in the previous graph, we add a legend that indicates the color of the
bars corresponding to the four wage categories. Lower wages are colored using
darker bars. We see that the darkest bars, corresponding to the lowest wage
category, are predominant for the High School and Some College categories,
and are unlikely for the Graduate College category.

> barplot(t(P), beside=T, legend.text=dimnames(P)$c.wage,
+ args.legend=list(x="topleft"), ylab="PROPORTION")

07]
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Fig. 3.9 Side-by-side bar charts of the wage categories for people in four educational
levels.

3.5 Testing Independence by a Chi-square Test

In the previous section, several methods for exploring the relationship be-
tween educational level and wage were illustrated. A more formal way of
investigating the relationship between the two categorical variables is by a
test of independence. If the variables educational level and wage are inde-
pendent, this means that the probabilities of a twin earning the four wage
categories will not depend on his/her education background. Based on our
exploratory work, we strongly suspect that educational level and wage are
not independent — a higher educational background appears to be associated
with higher wages — but we will see that this statistical test will give new
insight on how education and income are related.
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The traditional test of independence is based on Pearson’s chi-square
statistic. If we test the hypothesis

H : education background and wage are independent,

we compute estimated expected counts under the assumption that H is true.
If we let observed denote the table of counts and expected denote the table
of expected counts, then the Pearson statistic is defined by

X2 Z (observed — expected)Q'
expected
allcells
The Pearson statistic measures the deviation of the observed counts from
the expected counts and one rejects the hypothesis of independence for large
values of the statistic X2. If the hypothesis of independence is true, then
X2 will have, for large samples, an approximate chi-square distribution with
degrees of freedom given by df = (number of rows — 1) x (number of columns
— 1). Suppose that the computed value of X? for our data is equal to ngs.
The p-value is the probability of observing X? at least as extreme as ngs;
applying the chi-square approximation, this p-value is the probability that a
chi-square(df) random variable exceeds X2 _:
p—value = Prob(xflf > X2
In R, recall we have the first twin’s educational level stored in the variable
c.EDUCL and the wage category stored in c.wage. The contingency table
classifying twins by educational level and wage is stored in the variable T2:

> T2 = table(c.EDUCL, c.wage)

We perform a test of independence using the chisq.test function with the
table T2 as the sole argument. We save the test calculations in the variable
S.

> S = chisq.test(T2)
Warning message:
In chisq.test(T2) : Chi-squared approximation may be incorrect

The warning tells that the accuracy of the chi-square approximation is in
doubt due to a few small expected counts in the table. The results of the test
are obtained by simply printing this variable.

> print(S)
Pearson's Chi-squared test

data: T2
X-squared = 54.5776, df = 9, p-value = 1.466e-08

It is instructive to confirm the calculations of this statistical test. One first
computes the estimated expected counts of the table under the independence
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assumption — these expected counts are stored in the component expected
of S that we display.

> S$expected

c.wage
c.EDUCL 0,71 (7,131 (13,20] (20,1e+03]
High School 15.956790 19.691358 12.901235  6.450617

Some College 15.9566790 19.691358 12.901235 6.450617
College Degree 10.444444 12.888889 8.444444  4.222222
Graduate School 4.641975 5.728395 3.753086  1.876543

The observed counts are stored in the table T2. We can compute the test
statistic by perfoming the operation “observed minus expected squared di-
vided by expected” for all counts and summing over all cells.

> sum((T2 - S$expected) "2 / S$expected)
[1] 54.57759

Our answer, 54.57759, agrees with the displayed value of X-squared from
the chisq.test output. Also we can check the computation of the p-value.
The function pchisq computes the cdf of a chi-square random variable. Here
the number of rows and number of columns of the table are both 4, and the
degrees of freedom is equal to df = (4—1)(4—1) =9. Since the distribution
of the test statistic X2 has approximately a chi-square(9) distribution under
independence, the p-value is (approximately) the probability a x?(9) variate
exceeds 54.57759 which is given by

> 1 - pchisq(54.57759, df=9)
[1] 1.465839e-08

This also agrees with the p-value given in the chisq.test output. This p-
value is very small, so clearly the hypothesis of independence of educational
level and wage category is rejected.

All of the calculations related to this chi-square test are stored in the
variable S. One can view all components of S using the names function.
> names(S)

[1] "statistic" "parameter" "p.value" "method" "data.name" "observed"
[7] "expected" ‘"residuals"

One useful component is residuals — this contains the table of Pearson
residuals, where a particular residual is defined by

observed — expected

vexpected

and observed and expected are, respectively, the count and the estimated
expected count in that cell. By displaying the table of Pearson residuals, we
see where the counts deviate from the independence model.

resitdual =

> S$residuals
c.wage
c.EDUCL (0,7] (7,13] (13,20] (20,150]
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High School 1.7631849 0.2949056 -0.8077318 -2.1460758
Some College -0.2395212 0.7456104 -0.2509124 -0.5711527
College Degree -1.0658020 -0.2475938 1.9117978 -0.5948119
Graduate School -1.2262453 -1.5577776 -0.9049176 5.9300942

Informally, any residual larger than 2 in absolute value indicates a “signifi-
cant” deviation from independence. It is interesting that using this criterion,
there are two “large” residuals given in the rightmost column of the table. The
residual of —2.14 indicates that there are fewer High School people earning
wages over $20 than anticipated by the independence model. In addition, the
residual of 5.93 indicate there are more Graduate School people earning over
$20 that we would expect for independent variables. We can summarize the
association by saying that educational level matters most in the highest wage
category.

One can display the significant residuals by means of a mosaic plot. The
mosaicplot function is first applied with the shade=FALSE (default) argu-
ment and the areas of the rectangles in the display in Figure 3.10(a) corre-
spond to the counts in the table classifying twins by educational level and
wage category.

> mosaicplot (T2, shade=FALSE)

If the shade=TRUE argument is used, one obtains an extended mosaic plot
displayed in Figure 3.10(b). The border type and the shading of the rectan-
gles relate to the sizes of the Pearson residuals. The two shaded rectangles
correspond to the same two large residuals that we found by inspection of
the table of residuals.

> mosaicplot (T2, shade=TRUE)

Exercises

3.1 (Fast food eating preference). Fifteen students in a statistics class
were asked to state their preference among the three restaurtants Wendys,
McDonalds, and Subway. The responses for the students are presented below.

Wendys McDonalds Subway Subway Subway Wendys
Wendys Subway Wendys Subway Subway Subway
Subway Subway Subway

a. Use the scan function to read these data into the R command window.

b. Use the table function to find the frequencies of students who prefer the
three restaurants.

c. Compute the proportions of students in each category.

d. Construct two different graphical displays of the proportions.

3.2 (Dice rolls). Suppose you roll a pair of dice 1000 times.
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©n

c.wage
50 (1320] 3
c.wage
3
Standardized
Residuals: -

c.EDUCL c.EDUCL

(a) (b)

Fig. 3.10 Mosaic plots of the table categorizing twin 1 by educational level and
wage category. The left plot displays a basic mosaic plot and the right plot shows
an extended mosaic plot where the shaded rectangles in the lower left and lower
right sections of the graph correspond to large values of the corresponding Pearson
residuals.

a. One can simulate 1000 rolls of a fair die using the R function sample (6,
1000, replace=TRUE). Using this function twice, store 1000 simulated
rolls of the first die in the variable diel and 1000 simulated rolls of the
second die in the variable die?2.

b. For each pair of rolls, compute the sum of rolls, and store the sums in the
variable die.sum.

c. Use the table function to tabulate the values of the sum of die rolls. Com-
pute the proportions for each sum value and compare these proportions
with the exact probabilities of the sum of two die rolls.

3.3 (Does baseball hitting data follow a binomial distribution?).
Albert Pujols is a baseball player who has n opportunities to hit in a single
game. If y denotes the number of hits for a game, then it is reasonable to
assume that y has a binomial distribution with sample size n and probability
of success p = 0.312, where 0.312 is Pujols’ batting average (success rate) for
the 2010 baseball season.

a. In 70 games Pujols had exactly n =4 opportunities to hit and the num-
ber of hits y in these 70 games is tabulated in the following table. Use
the dbinom function to compute the expected counts and the chisq.test
function to test if the counts follow a binomial(4, 0.312) distribution.

b. In 25 games Pujols had exactly n =5 opportunities to hit and the number
of hits y in these 25 games is shown in the table below. Use the chisq.test
function to test if the counts follow a binomial(5, 0.312) distribution.
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Number of hits 0 1 2 3 or more
Frequency 17 31 17 5

Number of hits 0 1 2 3 or more
Frequency 554 11

3.4 (Categorizing ages in the twins dataset). The variable AGE gives
the age (in years) of twin 1.

a. Use the cut function on AGE with the breakpoints 30, 40, and 50 to create
a categorized version of the twin’s age.

b. Use the table function to find the frequencies in the four age categories.

c. Construct a graph of the proportions in the four age categories.

3.5 (Relating age and wage in the twins dataset). The variables AGE
and HRWAGEL contain the age (in years) and hourly wage (in dollars) of twin
1.

a. Using two applications of the cut function, create a categorized version
of AGE using the breakpoints 30, 40, and 50, and a categorized version of
HRWAGEL using the same breakpoints as in Section 3.3.

b. Using the categorized versions of AGE and HRWAGEL, construct a contin-
gency table of the two variables using the function table.

c. Use the prop.table function to find the proportions of twins in each age
class that have the different wage groups.

d. Construct a suitable graph to show how the wage distribution depends on
the age of the twin.

e. Use the conditional proportions in part (c¢) and the graph in part (d) to
explain the relationship between age and wage of the twins.

3.6 (Relating age and wage in the twins dataset, continued).

a. Using the contingency table of the categorized version of AGE and HRWAGEL
and the function chisq.test, perform a test of independence of age and
wage. Based on this test, is there significant evidence to conclude that age
and wage are dependent?

b. Compute and display the Pearson residuals from the test of independence.
Find the residuals that exceed 2 in absolute value.

c. Use the function mosaicplot with the argument shade=TRUE to construct
a mosaic plot of the table counts showing the extreme residuals.

d. Use the numerical and graphical work from parts (b) and (c) to explain
how the table of age and wages differs from an independence structure.

3.7 (Dice rolls, continued). Suppose you roll a pair of dice 1000 times and
you are interested in the relationship between the maximum of the two rolls
and the sum of the rolls.
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a. Using the sample function twice, simulate 1000 rolls of two dice and store
the simulated rolls in the variables diel and die2.

b. The pmax function will return the parallel maximum value of two vectors.
Using this function, compute the maximum for each of the 1000 pair of
rolls and store the results in the vector max.rolls. Similarly, store the
sum for each pair of rolls and store the sums in the vector sum.rolls.

c. Using the table function, construct a contingency table of the maximum
roll and the sum of rolls.

d. By the computation of conditional proportions, explore the relationship
between the maximum roll and the sum of rolls.

3.8 (Are the digits of m random?). The National Institute of Standards

and Technology has a web page that lists the first 5000 digits of the irrational

number 7. One can read these digits into R by means of the script

pidigits =

read.table("http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat",
skip=60)

a. Use the table function to construct a frequency table of the digits 1
through 9.

b. Construct a bar plot of the frequencies found in part (a).

c. Use the chi-square test, as implemented in the chisq.test function, to
test the hypothesis that the digits 1 through 9 are equally probable in the
digits of .


http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat
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