
Chapter 1

Introduction

R is a statistical computing environment. It is free (open source) software for
statistical computation and graphics [40] and a computer language designed
for typical statistical and graphical applications. The R distribution includes
the ability to save and run commands stored in script files, and an integrated
editor in the R Graphical User Interface (R-GUI). It is available for most
platforms including unix/linux, PC, and Macintosh platforms. Thousands
of contributed packages are available, and users are provided tools to make
packages.

At the core of R is an interpreted computer language. This language pro-
vides the logical control of branching and looping, and modular programming
using functions. The base R distribution contains functions and data to imple-
ment and illustrate most common statistical procedures, including regression
and ANOVA, classical parametric and nonparametric tests, cluster analysis,
density estimation, and much more. An extensive suite of probability distribu-
tion functions and generators are provided, as well as a graphical environment
for exploratory data analysis and creating presentation graphics.

On the history and evolution of R, see the R-FAQ [26] and resources on
the R home page at http://www.R-project.org/.

1.1 Getting Started

R is an interpreted language; that is, the system processes commands entered
by the user, who types the commands at the command prompt, or submits
the commands from a file called a script. We assume that our readers use
R at a graphics workstation running a windowing system, such as Windows,
Macintosh, or X window systems. In a window system, users interact with
R through the R console. Except for the simplest operations, most users will
prefer to type commands in a script (see Section 1.1.3) to save retyping and
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2 1 Introduction

to separate commands from results. However, let us begin by working directly
at the command prompt.

When we use the command line interface, each command or expression
to be evaluated is typed at the command prompt, and immediately evalu-
ated when the Enter key is pressed at the end of a syntactically complete
statement. It is helpful to remember the following tips.

� Press the up-arrow key to recall commands and edit them.
� Use the Esc (Escape) key to cancel a command.

1.1.1 Preliminaries

Remarks or tips about R are identified by the symbol Rx to set them apart
from the main text.

Rx 1.1 The right-to-left assignment operators are the left arrow <- and equal
sign =. For example, borrowing a line from Example 1.3, either method below

> x = c(109, 65, 22, 3, 1)

> x <- c(109, 65, 22, 3, 1)

creates the vector (109,65,22,3,1) and assigns it to x. Borrowing another line
from Example 1.3, either method below

> y = rpois(200, lambda=.61)

> y <- rpois(200, lambda=.61)

assigns the result of the rpois function to y. Notice that the equal sign in-
side the parentheses is not an assignment operator; it passes the value of an
argument (lambda) to the function rpois.

The R manuals and examples in the help files use the arrow assignment
operators <- and ->. However, in this book we have used the equal sign =

operator for assignment, rather than <-, as novice users may find it easier to
type the = symbol.

In the examples, R code and output appears in bold monospaced type
as in the remark Rx 1.1 above. Code that would be typed interactively by
the user or submitted from an R script is identified by the leading prompt
symbol >. Scripts for some of the functions in the examples are provided in
files available from the book web site; these functions are shown in the book
without the prompt character.

Data files and scripts used in the examples are available on our web site
at personal.bgsu.edu/~mrizzo/Rx. Some data files can be downloaded di-
rectly from a connection to a url.
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1.1.2 Basic operations

Some basic operations with vectors are illustrated in the following example.
The R commands are entered at the prompt in the R console window. The
prompt character is > and when a line is continued the prompt changes to
+. (The prompt symbols can be changed.)

Example 1.1 (Temperature data). Average annual temperatures in New Haven,
CT, were recorded in degrees Fahrenheit, as

Year 1968 1969 1970 1971
Mean temperature 51.9 51.8 51.9 53

(This data is part of a larger data set in R called nhtemp.) The combine
function c creates a vector from its arguments, and the result can be stored
in user-defined vectors. We use the combine function to enter our data and
store it in an object named temps.

> temps = c(51.9, 51.8, 51.9, 53)

To display the value of temps, one simply types the name.

> temps

[1] 51.9 51.8 51.9 53.0

Suppose that we want to convert the Fahrenheit temperatures (F) to Celsius
temperatures (C). The formula for the conversion is C = 5

9 (F − 32). It is
easy to apply this formula to all of the temperatures in one step, because
arithmetic operations in R are vectorized ; operations are applied element by
element. For example, to subtract 32 from every element of temp, we use

> temps - 32

[1] 19.9 19.8 19.9 21.0

Then (5/9)*(temps - 32) multiplies each difference by 5/9. The tempera-
tures in degrees Celsius are

> (5/9) * (temps - 32)

[1] 11.05556 11.00000 11.05556 11.66667

In 1968 through 1971, the mean annual temperatures (Fahrenheit) in the state
of Connecticut were 48, 48.2, 48, 48.7, according to the National Climatic
Center Data web page. We store the state temperatures in CT, and compare
the local New Haven temperatures with the state averages. For example,
one can compute the annual differences in mean temperatures. Here CT and
temps are both vectors of length four and the subtraction operation is applied
element by element. The result is the vector of four differences.

> CT = c(48, 48.2, 48, 48.7)

> temps - CT

[1] 3.9 3.6 3.9 4.3
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The four values in the result are differences in mean temperatures for 1968
through 1971. It appears that on average New Haven enjoyed slightly warmer
temperatures than the state of Connecticut in this period.

Example 1.2 (President’s heights). An article in Wikipedia [54] reports data
on the heights of Presidents of the United States and the heights of their
opponents in the presidential election. It has been observed [53, 48] that
the taller presidential candidate typically wins the election. In this example,
we explore the data corresponding to the elections in the television era. In
Table 1.1 are the heights of the presidents and their opponents in the U.S.
presidential elections of 1948 through 2008, extracted from the Wikipedia
article.

Table 1.1 Height of the election winner in the Electoral College and height of the
main opponent in the U.S. Presidential elections of 1948 through 2008.

Year Winner Height Opponent Height
2008 Barack Obama 6 ft 1 in 185 cm John McCain 5 ft 9 in 175 cm
2004 George W. Bush 5 ft 11.5 in 182 cm John Kerry 6 ft 4 in 193 cm
2000 George W. Bush 5 ft 11.5 in 182 cm Al Gore 6 ft 1 in 185 cm
1996 Bill Clinton 6 ft 2 in 188 cm Bob Dole 6 ft 1.5 in 187 cm
1992 Bill Clinton 6 ft 2 in 188 cm George H.W. Bush 6 ft 2 in 188 cm
1988 George H.W. Bush 6 ft 2 in 188 cm Michael Dukakis 5 ft 8 in 173 cm
1984 Ronald Reagan 6 ft 1 in 185 cm Walter Mondale 5 ft 11 in 180 cm
1980 Ronald Reagan 6 ft 1 in 185 cm Jimmy Carter 5 ft 9.5 in 177 cm
1976 Jimmy Carter 5 ft 9.5 in 177 cm Gerald Ford 6 ft 0 in 183 cm
1972 Richard Nixon 5 ft 11.5 in 182 cm George McGovern 6 ft 1 in 185 cm
1968 Richard Nixon 5 ft 11.5 in 182 cm Hubert Humphrey 5 ft 11 in 180 cm
1964 Lyndon B. Johnson 6 ft 4 in 193 cm Barry Goldwater 5 ft 11 in 180 cm
1960 John F. Kennedy 6 ft 0 in 183 cm Richard Nixon 5 ft 11.5 in 182 cm
1956 Dwight D. Eisenhower 5 ft 10.5 in 179 cm Adlai Stevenson 5 ft 10 in 178 cm
1952 Dwight D. Eisenhower 5 ft 10.5 in 179 cm Adlai Stevenson 5 ft 10 in 178 cm
1948 Harry S. Truman 5 ft 9 in 175 cm Thomas Dewey 5 ft 8 in 173 cm

Section 1.5 illustrates several methods for importing data from a file. In
this example we enter the data interactively as follows. The continuation
character + indicates that the R command is continued.

> winner = c(185, 182, 182, 188, 188, 188, 185, 185, 177,

+ 182, 182, 193, 183, 179, 179, 175)

> opponent = c(175, 193, 185, 187, 188, 173, 180, 177, 183,

+ 185, 180, 180, 182, 178, 178, 173)

(Another method for entering data interactively is to use the scan function.
See Example 3.1 on page 79.) Now the newly created objects winner and
opponent are each vectors of length 16.

> length(winner)

[1] 16
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The year of the election is a regular sequence, which we can generate using
the sequence function seq. Our first data value corresponds to year 2008, so
the sequence can be created by

> year = seq(from=2008, to=1948, by=-4)

or equivalently by

> year = seq(2008, 1948, -4)

According to the Washington Post blog [53], Wikipedia misstates “Bill
Clinton’s height, which was measured during official medical exams at 6 foot-
2-1/2, making him just a tad taller than George H.W. Bush.”We can correct
the height measurement for Bill Clinton by assigning a height of 189 cm to
the fourth and fifth entries of the vector winner.

> winner[4] = 189

> winner[5] = 189

The sequence operator : allows us to perform this operation in one step:

> winner[4:5] = 189

The revised values of winner are

> winner

[1] 185 182 182 189 189 188 185 185 177 182 182 193 183 179 179 175

Are presidents taller than average adult males? According to the National
Center for Health Statistics, in 2005 the average height for an adult male
in the United States is 5 feet 9.2 inches or 175.768 cm. The sample mean is
computed by the mean function.

> mean(winner)

[1] 183.4375

Interestingly, the opponents also tend to be taller than average.

> mean(opponent)

[1] 181.0625

Next, we use vectorized operations to compute the differences in the height
of the winner and the main opponent, and store the result in difference.

> difference = winner - opponent

An easy way to display our data is as a data frame:

> data.frame(year, winner, opponent, difference)

The result is displayed in Table 1.2. Data frames are discussed in detail in
Section 1.4.

We see that most, but not all, of the differences in height are positive,
indicating that the taller candidate won the election. Another approach to
determining whether the taller candidate won is to compare the heights with
the logical operator >. Like the basic arithmetic operations, this operation is
vectorized. The result will be a vector of logical values (TRUE/FALSE) having
the same length as the two vectors being compared.
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Table 1.2 Data for Example 1.2.

> data.frame(year, winner, opponent, difference)

year winner opponent difference

1 2008 185 175 10

2 2004 182 193 -11

3 2000 182 185 -3

4 1996 189 187 2

5 1992 189 188 1

6 1988 188 173 15

7 1984 185 180 5

8 1980 185 177 8

9 1976 177 183 -6

10 1972 182 185 -3

11 1968 182 180 2

12 1964 193 180 13

13 1960 183 182 1

14 1956 179 178 1

15 1952 179 178 1

16 1948 175 173 2

> taller.won = winner > opponent

> taller.won

[1] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

[10] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

On the second line, the prefix [10] indicates that the output continues with
the tenth element of the vector.

The table function summarizes discrete data such as the result in the
vector taller.won.

> table(taller.won)

taller.won

FALSE TRUE

4 12

We can use the result of table to display percentages if we divide the result
by 16 and multiply that result by 100.

> table(taller.won) / 16 * 100

taller.won

FALSE TRUE

25 75

Thus, in the last 16 elections, the odds in favor of the taller candidate winning
the election are 3 to 1.

Several types of graphs of this data may be interesting to help visualize
any pattern. For example, we could display a barplot of differences using the
barplot function. For the plot we use the rev function to reverse the order
of the differences so that the election year is increasing from left to right. We
also provide a descriptive label for both axes.



1.1 Getting Started 7

> barplot(rev(difference), xlab="Election years 1948 to 2008",

+ ylab="Height difference in cm")

The barplot of differences in heights is shown in Figure 1.1.
It would also be interesting to display a scatterplot of the data. A scatter-

plot of loser’s heights vs winner’s height for election years 1798 through 2004
appears in the Wikipedia article [54]. A simple version of the scatterplot (not
shown here) can be obtained in R by

> plot(winner, opponent)

Chapter 4 “Presentation Graphics” illustrates many options for creating a
custom graphic such as the scatterplot from the Wikipedia article.
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Fig. 1.1 Barplot of the difference in height of the election winner in the Electoral
College over the height of the main opponent in the U.S. Presidential elections. Height
differences in centimeters for election years 1948 through 2008 are shown from left to
right. The electoral vote determines the outcome of the election. In 12 out of these
16 elections, the taller candidate won the electoral vote. In 2000, the taller candidate
(Al Gore) did not win the electoral vote, but received more popular votes.

Example 1.3 (horsekicks). This data set appears in several books; see e.g.
Larsen and Marx [30, p. 287]. In the late 19th century, Prussian officers
collected data on deaths of soldiers in 10 calvary corps recording fatalities
due to horsekicks over a 20 year period. The 200 values are summarized in
Table 1.3.

To enter this data, we use the combine function c.
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Table 1.3 Fatalities due to horsekick for Prussian calvary in Example 1.3

Number of deaths, k Number of corps-years in
which k fatalities occurred

0 109
1 65
2 22
3 3
4 1

200

> k = c(0, 1, 2, 3, 4)

> x = c(109, 65, 22, 3, 1)

To display a bar plot of the frequencies, we use the barplot function. The
function barplot(x) produces a barplot like Figure 1.2, but without the
labels below the bars. The argument names.arg is optional; it assigns labels
to display below the bars. Figure 1.2 is obtained by.

> barplot(x, names.arg=k)

0 1 2 3 4

0
20

40
60

80
10

0

Fig. 1.2 Frequency distribution for Prussian horsekick data in Example 1.3.

The relative frequency distribution of the observed data in x is easily com-
puted using vectorized arithmetic in R. For example, the sample proportion
of 1’s is 65/200 = 0.545. The expression x/sum(x) divides every element of
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the vector x by the sum of the vector (200). The result is a vector the same
length as x containing the sample proportions of the death counts 0 to 4.

> p = x / sum(x)

> p

[1] 0.545 0.325 0.110 0.015 0.005

The center of this distribution can be estimated by its sample mean, which
is

1
200

200∑
i=1

xi = 109(0)+65(1)+22(2)+3(3)+1(4)
200 .

= 0.545(0)+0.325(1)+0.110(2)+0.015(3)+0.005(4).

The last line is simply the sum of p*k, because R computes this product
element by element (“vectorized”). Now we can write the sample mean formula
as the sum of the vector p*k. The value of the sample mean is then assigned
to r.

> r = sum(p * k)

> r

[1] 0.61

Similarly, one can compute an estimate of the variance. Apply the computing
formula for variance of a sample y1, . . . ,yn:

s2 = 1
n−1

n∑
i=1

(yi −y)2.

Here the sample mean is the value r computed above and

s2 = 1
n−1

{
109(0− r)2 +65(1− r)2 +22(2− r)2 +3(3− r)2 +1(4− r)2} ,

so the expression inside the braces can be coded as x*(k-r)^2. The sample
variance v is:

> v = sum(x * (k - r)^2) / 199

> v

[1] 0.6109548

Among the counting distributions that might fit this data (binomial, ge-
ometric, negative binomial, Poisson, etc.) the Poisson is the one that has
equal mean and variance. The sample mean 0.61 and sample variance 0.611
are almost equal, which suggests fitting a Poisson distribution to the data.
The Poisson model has probability mass function

f(k) = λk e−λ

k! , k ≥ 0, (1.1)
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where λ =
∑∞

k=0 kf(k) is the mean of the distribution. The sample mean 0.61
is our estimate of the population mean λ. Substituting the sample mean for
λ in the density (1.1), the corresponding Poisson probabilities are

> f = r^k * exp(- r) / factorial(k)

> f

[1] 0.5433509 0.3314440 0.1010904 0.0205551 0.0031346

R has probability functions for many distributions, including Poisson. The R
density functions begin with “d” and the Poisson density function is dpois.
The probabilities above can also be computed as

> f = dpois(k, r)

> f

[1] 0.5433509 0.3314440 0.1010904 0.0205551 0.0031346

Rx 1.2 R provides functions for the density, cumulative distribution func-
tion (CDF), percentiles, and for generating random variates for many com-
monly applied distributions. For the Poisson distribution these functions are
dpois, ppois, qpois, and rpois, respectively. For the normal distribution
these functions are dnorm, pnorm, qnorm, and rnorm.

How well does the Poisson model fit the horsekick data? In a sample of size
200, the expected counts are 200f(k). Truncating the fraction using floor

we have

> floor(200*f) #expected counts

[1] 108 66 20 4 0

> x #observed counts

[1] 109 65 22 3 1

for k = 0,1,2,3,4, respectively. The expected and observed counts are in close
agreement, so the Poisson model appears to be a good one for this data.

One can alternately compare the Poisson probabilities (stored in vector
f) with the sample proportions (stored in vector p). To summarize our com-
parison of the probabilities in a matrix we can use rbind or cbind. Both
functions bind vectors together to form matrices; with rbind the vectors be-
come rows, and with cbind the vectors become columns. Here we use cbind
to construct a matrix with columns k, p, and f.

> cbind(k, p, f)

k p f

[1,] 0 0.545 0.5433509

[2,] 1 0.325 0.3314440

[3,] 2 0.110 0.1010904

[4,] 3 0.015 0.0205551

[5,] 4 0.005 0.0031346

It appears that the observed proportions p are close to the Poisson(0.61)
probabilities in f.
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1.1.3 R Scripts

Example 1.3 contains several lines of code that would be tedious to retype
if one wants to continue the data analysis. If the commands are placed in a
file, called an R script, then the commands can be run using source or copy-
paste. Using the source function causes R to accept input from the named
source, such as a file.

Open a new R script for editing. In the R GUI users can open a new script
window through the File menu. Type the following lines of “horsekicks.R”
(below) in the script. It is a good idea to insert a few comments. Comments
begin with a # symbol.

Using the source function, auto-printing of expressions does not happen.
We added print statements to the script so that the values of objects will
be printed.

horsekicks.R
# Prussian horsekick data

k = c(0, 1, 2, 3, 4)

x = c(109, 65, 22, 3, 1)

p = x / sum(x) #relative frequencies

print(p)

r = sum(k * p) #mean

v = sum(x * (k - r)^2) / 199 #variance

print(r)

print(v)

f = dpois(k, r)

print(cbind(k, p, f))

At this point it is convenient to create a working directory for the R scripts
and data files that will be used in this book. To display the current working
directory, type getwd(). For example, one may create a directory at the
root, say /Rx. Then change the working directory through the File menu or
by the function setwd, substituting the path to your working directory in the
quotation marks below. On our system this has the following effect.

> getwd()

[1] "C:/R/R-2.13.0/bin/i386"

> setwd("c:/Rx")

> getwd()

[1] "c:/Rx"

Save the script as “horsekicks.R” in your working directory. Now the file can
be sourced by the command

source("horsekicks.R")

and all of the commands in the file will be executed.

Rx 1.3 Unlike Matlab .m files, an R script can contain any number of func-
tions and commands. Matlab users may be familiar with defining a function
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by writing an .m file, where each .m file is limited to exactly one function.
Function syntax is covered in Section 1.2.

Rx 1.4 Here are a few helpful shortcuts for running part of a script.

� Select lines and click the button ‘Run line or selection’ on the toolbar.
� Copy the lines, and then paste the lines at the command prompt.
� (For Windows users:) To execute one or more lines of the file in the R

GUI editor, select the lines and type Ctrl-R.
� (For Macintosh users:) One can execute lines of a file by selecting the lines

and typing Command-Return.

Example 1.4 (Simulated horsekick data). For comparison with Example 1.3,
in this example we use the random Poisson generator rpois to simulate 200
random observations from a Poisson(λ = 0.61) distribution. We then com-
pute the relative frequency distribution for this sample. Because these are
randomly generated counts, each time the code below is executed we obtain
a different sample and therefore the results of readers will vary slightly from
what follows.

> y = rpois(200, lambda=.61)

> kicks = table(y) #table of sample frequencies

> kicks

y

0 1 2 3

105 67 26 2

> kicks / 200 #sample proportions

y

0 1 2 3

0.525 0.335 0.130 0.010

Comparing this data with the theoretical Poisson frequencies:

> Theoretical = dpois(0:3, lambda=.61)

> Sample = kicks / 200

> cbind(Theoretical, Sample)

Theoretical Sample

0 0.54335087 0.525

1 0.33144403 0.335

2 0.10109043 0.130

3 0.02055505 0.010

The computation of mean and variance is simpler here than in Example 1.3
because we have the raw, ungrouped data in the vector y.

> mean(y)

[1] 0.625

> var(y)

[1] 0.5571608

It is interesting that the observed Prussian horsekicks data seems to fit the
Poisson model better than our simulated Poisson(λ = 0.61) sample.
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1.1.4 The R Help System

The R Graphical User Interface has a Help menu to find and display online
documentation for R objects, methods, data sets, and functions. Through the
Help menu one can find several manuals in PDF form, an html help page,
and help search utilities. The help search utility functions are also available
at the command line, using the functions help and help.search, and the
corresponding shortcuts ? and ??. These functions are described below.

� help("keyword") displays help for “keyword”.
� help.search("keyword") searches for all objects containing “keyword”.

The quotes are usually optional in help, but would be required for special
characters such as in help("["). Quotes are required for help.search. When
searching for help topics, keep in mind that R is case-sensitive: for example,
t and T are different objects.

One or two question marks in front of a search term also search for help
topics.

� ?keyword (short for help(keyword)).
� ??keyword (short for help.search("keyword")).

Try entering the following commands to see their effect.

?barplot #searches for barplot topic

??plot #anything containing "plot"

help(dpois) #search for "dpois"

help.search("test") #anything containing "test"

The last command above displays a list including a large number of statistical
tests implemented in the R.

One of the features of R online help is that most of the keywords doc-
umented include examples appearing at the end of the page. Users can try
one or more of the examples by selecting the code and then copy-paste to
the console. R also provides a function example that runs all of the exam-
ples if any exist for the keyword. To see the examples for the function mean,
type example(mean). The examples are then executed and displayed at the
console with a special prompt symbol (mean>) that is specific to the keyword.

> example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))

[1] 8.75 5.50
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mean> mean(USArrests, trim = 0.2)

Murder Assault UrbanPop Rape

7.42 167.60 66.20 20.16

>

For many of the graphics functions, the documentation includes interesting
examples. Try example(curve) for an overview of what the curve function
can do. The system will prompt the user for input as it displays each graph.

A glossary of R functions is available online in “Appendix D: Function and
Variable Index” of the manual “Introduction to R” [49], and the “R Refer-
ence Manual” [41] has a comprehensive index by function and concept. These
manuals are included with the R distribution, and also available online on
the R project home page1 at the line “Manuals” under “Documentation”.

1.2 Functions

The R language allows for modular programming using functions. R users
interact with the software primarily through functions. We have seen several
examples of functions above. In this section, we discuss how to create user-
defined functions.

The syntax of a function is

f = function(x, ...) {

}

or

f <- function(x, ...) {

}

where f is the name of the function, x is the name of the first argument (there
can be several arguments), and ... indicates possible additional arguments.
Functions can be defined with no arguments, also. The curly brackets enclose
the body of the function. The return value of a function is the value of the
last expression evaluated.

Example 1.5 (function definition). R has a function var that computes the
unbiased estimate of variance, usually denoted by s2. Occasionally, one re-
quires the maximum likelihood estimator (MLE) of variance,

σ̂2 = 1
n

n∑
i=1

(xi −x)2 = n−1
n

s2.

A function to compute σ̂2 can be created as follows.

1 www.r-project.org

http://www.r-project.org


1.2 Functions 15

var.n = function(x) {

v = var(x)

n = NROW(x)

v * (n - 1) / n

}

The NROW function computes the number of observations in x. The value v *

(n-1)/n evaluated on the last line is returned. Note: it would also be correct
(but unnecessary) to replace the last line of the function var.n with

return(v * (n - 1) / n)

Before this user-defined function can be used, one must input the code
so that the function, in this case var.n, is an object in the R workspace.
Normally, one places functions in a script file and uses the source function
(or copy and paste to the command line) to submit them. Here is an example
that computes s2 and σ̂2 for the temperature data of Example 1.1.

> temps = c(51.9, 51.8, 51.9, 53)

> var(temps)

[1] 0.3233333

> var.n(temps)

[1] 0.2425

Example 1.6 (functions as arguments). Many of the available R functions re-
quire functions as arguments. An example is the integrate function, which
implements numerical integration; one must supply the integrand as an argu-
ment. Suppose that we need to compute the beta function, which is defined
as

B(a,b) =
∫ 1

0
xa−1(1−x)b−1 dx,

for constants a > 0 and b > 0. First we write a function that returns the
integrand evaluated at a given point x. The additional arguments a and b
specify the exponents.

f = function(x, a=1, b=1)

x^(a-1) * (1-x)^(b-1)

The curly brackets are not needed here because there is only one line in the
function body. Also, we defined default values a = 1 and b = 1, so that if a or
b are not specified, the default values will be used. The function can be used
to evaluate the integrand along a sequence of x values.

> x = seq(0, 1, .2) #sequence from 0 to 1 with steps of .2

> f(x, a=2, b=2)

[1] 0.00 0.16 0.24 0.24 0.16 0.00

This vectorized behavior is necessary for the function argument of the in-

tegrate function; the function that evaluates the integrand must accept a
vector as its first argument and return a vector of the same length.

Now the numerical integration result for a = b = 2 can be obtained by
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> integrate(f, lower=0, upper=1, a=2, b=2)

0.1666667 with absolute error < 1.9e-15

Actually, R provides a function beta to compute this integral. We can com-
pare our numerical integration result to the value returned by the beta func-
tion:

> beta(2, 2)

[1] 0.1666667

See ?Special for more details on the beta and other special functions of
mathematics.

Rx 1.5 The integrate function is an example of a function syntax with
extra arguments (...). The complete function syntax is

integrate(f, lower, upper, ..., subdivisions=100,

rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,

stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)

The three dots are additional arguments to be passed to the integrand function
f. In our example, these extra arguments were a and b.

Example 1.7 (graphing a function using curve). R provides the curve func-
tion to display the graph of a function. For example, suppose that we wish
to graph the function

f(x) = xa−1(1−x)b−1

for a = b = 2, which is the integrand in Example 1.6. This is easily obtained
as

> curve(x*(1-x), from=0, to=1, ylab="f(x)")

See Figure 1.3 for the result. The function argument in curve is always writ-
ten as a function of x. The optional argument ylab specifies the label for the
vertical axis.

1.3 Vectors and Matrices

A vector in R contains a finite sequence of values of a single type, such as
a sequence of numbers or a sequence of characters. A matrix in R is a two
dimensional array of values of a single type.

Common operations on vectors and matrices are illustrated with the fol-
lowing probability example. A more detailed introduction to vectors and ma-
trices in R is provided in the Appendix.

Example 1.8 (Class mobility). The following model of class mobility is dis-
cussed in Ross [42, Example 4.19, p. 207]. Assume that the class of a child
(lower, middle, or upper class) depends only on the class of his/her parents.
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Fig. 1.3 Plot of the beta function for parameters a = 2, b = 2 in Example 1.7.

The class of the parents is indicated by the row label. The entries in the ta-
ble below correspond to the chance that the child will transition to the class
indicated by the column label.

lower middle upper
lower 0.45 0.48 0.07
middle 0.05 0.70 0.25
upper 0.01 0.50 0.49

To create a matrix with these transition probabilities, we use the matrix

function. First, the vector of probabilities probs is constructed to supply the
entries of the matrix. Then the matrix is defined by its entries, number of
rows, and number of columns.

> probs = c(.45, .05, .01, .48, .70, .50, .07, .25, .49)

> P = matrix(probs, nrow=3, ncol=3)

> P

[,1] [,2] [,3]

[1,] 0.45 0.48 0.07

[2,] 0.05 0.70 0.25

[3,] 0.01 0.50 0.49

Notice that the values are entered by column; to enter the data by row,
use the optional argument byrow=TRUE in the matrix function. Matrices can
optionally have row names and column names. In this case, row names and
column names are identical, so we can assign both using

> rownames(P) <- colnames(P) <- c("lower", "middle", "upper")

and the updated value of P is
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> P

lower middle upper

lower 0.45 0.48 0.07

middle 0.05 0.70 0.25

upper 0.01 0.50 0.49

In the matrix P = (pij), the probability pij in the i-th row and j-th column
is the probability of a transition from class i to class j in one generation.

This type of matrix has rows that sum to 1 (because each row is a prob-
ability distribution on the three classes). This fact can be verified by the
rowSums function.

> rowSums(P)

lower middle upper

1 1 1

Another approach uses the apply function. It requires specifying the name of
the matrix, MARGIN (row=1, column=2), and FUN (function) as its arguments.

> apply(P, MARGIN=1, FUN=sum)

lower middle upper

1 1 1

It can be shown that the transition probabilities for two generations are
given by the product P 2 = PP , which can be computed by the matrix mul-
tiplication operator %*%.

> P2 = P %*% P

> P2

lower middle upper

lower 0.2272 0.5870 0.1858

middle 0.0600 0.6390 0.3010

upper 0.0344 0.5998 0.3658

Rx 1.6 Here we did not use the syntax P^2 because P^2 squares every element
of the matrix and the result is the matrix (p2

ij), not the matrix product.

To extract elements from the matrix, the [row, column] syntax is used. If
the row or column is omitted, this specifies all rows (columns). In two gener-
ations, the probability that descendants of lower class parents can transition
to upper class is in row 1, column 3:

> P2[1, 3]

[1] 0.1858

and the probability distribution for lower class to (lower, middle, upper) is
given by row 1:

> P2[1, ]

lower middle upper

0.2272 0.5870 0.1858

After several generations, each row of the transition matrix will be approx-
imately equal, with probabilities p = (l,m,u) corresponding to the percent-
ages of lower, middle, and upper class occupations. After eight transitions,
the probabilities are P8:
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> P4 = P2 %*% P2

> P8 = P4 %*% P4

> P8

lower middle upper

lower 0.06350395 0.6233444 0.3131516

middle 0.06239010 0.6234412 0.3141687

upper 0.06216410 0.6234574 0.3143785

It can be shown that the limiting probabilities are 0.07, 0.62, and 0.31. For
the solution p, see Ross [42, p. 207].

Rx 1.7 To enter a matrix of constants, as in this example, it is usually easier
to enter data by rows using byrow=TRUE in the matrix function. Compare the
following with the example on page 17.

> Q = matrix(c( 0.45, 0.48, 0.07,

+ 0.05, 0.70, 0.25,

+ 0.01, 0.50, 0.49), nrow=3, ncol=3, byrow=TRUE)

> Q

[,1] [,2] [,3]

[1,] 0.45 0.48 0.07

[2,] 0.05 0.70 0.25

[3,] 0.01 0.50 0.49

The “by row” format makes it easier to see (visually) the data vector as a
matrix in the code.

Rx 1.8 Matrix operations for numeric matrices in R:

1. Elementwise multiplication: *
If matrices A = (aij) and B = (bij) have the same dimension, then A*B is
evaluated as the matrix with entries (aijbij).

2. If A = (aij) is a matrix then A^r is evaluated as the matrix with entries
(ar

ij).
3. Matrix multiplication: %*%

If A = (aij) is an n × k matrix and B = (bij) is a k × m matrix, then
A %*% B is evaluated as the n×m matrix product AB.

4. Matrix inverse:
If A is a nonsingular matrix, the inverse of A is returned by solve(A).

For eigenvalues and matrix factorization, see eigen, qr, chol, and svd.

1.4 Data Frames

Data frames are special types of objects in R designed for data sets that are
somewhat like matrices, but unlike matrices, the columns of a data.frame

can be different types such as numeric or character. Several data sets are
installed with R; a list of these data sets can be displayed by the command
data(). Most data sets that are provided with R are in data frame format.
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1.4.1 Introduction to data frames

The data frame format is similar to a spreadsheet, with the variables corre-
sponding to columns and the observations corresponding to rows. Variables in
a data frame may be numeric (numbers) or categorical (characters or factors).

To get an initial overview of a data frame, we are usually interested in
knowing the names of variables, type of data, sample size, numbers of missing
observations, etc.

Example 1.9 (USArrests). The USArrests data records rates of violent crimes
in the US. The statistics are given as arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. The percentage of the
population living in urban areas is also given. Some basic functions to get
started with a data frame are illustrated with this data set.

Display all data

To simply display the data, type the name of the object, USArrests.

Display top of data

To display the first few lines of data:

> head(USArrests)

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

Arkansas 8.8 190 50 19.5

California 9.0 276 91 40.6

Colorado 7.9 204 78 38.7

The result shows that we have four variables named Murder, Assault, Ur-
banPop, and Rape, and that the observations (rows) are labeled by the name
of the state. We also see that the states appear to be listed in alphabetical
order. All of the variables appear to be quantitative, which we expected from
the description above.

Sample size and dimension

How many observations are in this data set? (NROW, nrow, or dim)

> NROW(USArrests)

[1] 50

> dim(USArrests) #dimension

[1] 50 4
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The dimension (dim) of a data frame or a matrix returns a vector with the
number of rows and number of columns. NROW returns the number of ob-
servations. We have 50 observations corresponding to the 50 states in the
U.S.

Names of variables

Get (or set) names of variables in the data frame:

> names(USArrests)

[1] "Murder" "Assault" "UrbanPop" "Rape"

Structure of the data

Display information about the structure of the data frame (str):

> str(USArrests)

�data.frame�: 50 obs. of 4 variables:

$ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...

$ Assault : int 236 263 294 190 276 204 110 238 335 211 ...

$ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...

$ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...

The result of str gives the dimension as well as the name and type of each
variable. We have two numeric type and two integer type variables. Although
we can think of integer as a special case of numeric, they are stored differently
in R.

Rx 1.9 For many data sets, like USArrests, all of the data are numbers and
in this case the data can be converted to a matrix using as.matrix. But in
order to store the data in a matrix, all variables must be of the same type so
R will convert the integers to numeric. Compare the result in matrix form:

> arrests = as.matrix(USArrests)

> str(arrests)

num [1:50, 1:4] 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...

..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"

This output shows that all of the data was converted to numeric, listed on the
first line as num. The attributes (attr) are the row and column names (dim-
names). The conversion preserved the row labels and converted the variable
names to column labels. We used names to get the names of the variables in
the data frame, but we would use rownames, colnames or dimnames (to get
both) to get the row and/or column names. These last three functions can
also be used on data frames.
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Missing values

The is.na function returns TRUE for a missing value and otherwise FALSE.
The expression is.na(USArrests) will return a data frame the same size as
USArrests where every entry is TRUE or FALSE. To quickly check if any of the
results are TRUE we use the any function.

> any(is.na(USArrests))

[1] FALSE

We see that USArrests does not contain missing values. A data set with
missing values is discussed in Example 2.3 on page 53.

1.4.2 Working with a data frame

In this section we illustrate some operations on data frames, and some basic
statistics and plots.

Example 1.10 (USArrests, cont.).

Compute summary statistics

Obtain appropriate summary statistics for each variable using summary. For
numeric data, the summary function computes a five-number summary and
sample mean.

> summary(USArrests)

Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30

1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07

Median : 7.250 Median :159.0 Median :66.00 Median :20.10

Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23

3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18

Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00

If there were any missing values, the number of missing values would be
included in the summaries; see e.g. Example 2.3 on page 53. If any of our
variables were categorical, summary would tabulate the values for those vari-
ables.

From the summary it appears that the mean and median are approxi-
mately equal for all variables except Assault. The mean for Assault is larger
than the median, indicating that the assault data is positively skewed.



1.4 Data Frames 23

Extract data from a data frame

The simplest way to extract data from a data frame uses the matrix-style
[row, column] indexing.

> USArrests["California", "Murder"]

[1] 9

> USArrests["California", ]

Murder Assault UrbanPop Rape

California 9 276 91 40.6

Extract a variable using $

Variables can be extracted using the $ operator followed by the name of the
variable.

> USArrests$Assault

[1] 236 263 294 190 276 204 110 238 335 211 46 120 249 113

[15] 56 115 109 249 83 300 149 255 72 259 178 109 102 252

[29] 57 159 285 254 337 45 120 151 159 106 174 279 86 188

[43] 201 120 48 156 145 81 53 161

Histograms

In the summary of the USArrests data frame, we observed that the distribu-
tion of assaults may be positively skewed because the sample mean is larger
than the sample median. A histogram of the data helps to visualize the shape
of the distribution. We show two versions of the histogram of Assault. The
result of

> hist(USArrests$Assault)

is shown in Figure 1.4(a). The skewness is easier to observe in the second
histogram (Figure 1.4(b)), obtained using

> library(MASS) #need for truehist function

> truehist(USArrests$Assault)

There are obvious differences in the histograms; one is that the vertical scales
differ. Another is that there are a different number of bins. Figure 1.4(a) is a
frequency histogram, and Figure 1.4(b) is a probability histogram.

Rx 1.10 Try the following command and compare the result with truehist

in Figure 1.4(b):

hist(USArrests$Assault, prob=TRUE, breaks="scott")

The two histogram functions hist and truehist have different default meth-
ods for determining the bin width, and the truehist function by default pro-
duces a probability histogram. The optional arguments of hist above match
the defaults of truehist.
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Fig. 1.4 Frequency histogram (a) using hist and probability histogram (b) using
truehist for the assault data in USArrests.

Attaching a data frame

If we attach the data frame, the variables can be referenced directly by
name, without the dollar sign operator. For example, it is easy to compute
the percent of crimes that are murders using vectorized operations.

> attach(USArrests)

> murder.pct = 100 * Murder / (Murder + Assault + Rape)

> head(murder.pct)

[1] 4.881657 3.149606 2.431702 4.031150 2.764128 3.152434

If a data frame is attached, it can be detached when it is no longer needed
using the detach function.

An alternative to attaching a data frame is (sometimes) to use the with

function. It is useful for displaying plots or summary statistics. However,
variables created using with are local to it.

> with(USArrests, expr={

+ murder.pct = 100 * Murder / (Murder + Assault + Rape)

+ })

> murder.pct

Error: object �murder.pct� not found

The documentation for with states that “assignments within expr take place
in the constructed environment and not in the user’s workspace.” So all com-
putations involving the variable murder.pct created in the expr block of the
with function would have to be completed within the scope of the expr block.
This can sometimes lead to unexpected errors in an analysis that can easily
go undetected.
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Rx 1.11 Is it good programming practice to attach a data frame? A disad-
vantage is that there can be conflicts with names of variables already in the
workspace. Many functions in R have a data argument, which allows the vari-
ables to be referenced by name within the list of arguments, without attaching
the data frame. Unfortunately, some R functions (such as plot) do not have
a data argument. The use of with could lead to unexpected programming er-
rors, especially for novices. Overall, we find that attaching a data frame is
sometimes helpful to make code more readable.

Scatterplots and correlations

In the USArrests data all of the variables are numbers, so it is interesting
to display scatterplots of different pairs of data to look for possible relations
between the variables. We can display a single scatterplot using the plot

function. Recall that above we have attached the data frame using attach so
the variables can be referenced directly by name. To obtain a plot of murders
vs percent urban population we use

> plot(UrbanPop, Murder)

and the result is shown in Figure 1.5. The plot does not reveal a very strong
relation between murders and percent population. The pairs function can
be used to display an array of scatterplots for each pair of variables.

> pairs(USArrests)

The pairs plot shown in Figure 1.6 conveys much information about the data.
There appears to be a positive association between murder and assault rates,
but weak or no association between murder and percent urban population.
There is a positive association between rape and percent urban population.

The correlation statistic measures the degree of linear association between
two variables. One can obtain correlation for a pair of variables or a table
of correlation statistics for a group of variables using the cor function. By
default it computes the Pearson correlation coefficient.

> cor(UrbanPop, Murder)

[1] 0.06957262

> cor(USArrests)

Murder Assault UrbanPop Rape

Murder 1.00000000 0.8018733 0.06957262 0.5635788

Assault 0.80187331 1.0000000 0.25887170 0.6652412

UrbanPop 0.06957262 0.2588717 1.00000000 0.4113412

Rape 0.56357883 0.6652412 0.41134124 1.0000000

All of the correlations are positive in sign. The small correlation of r
.= 0.07

between Murder and UrbanPop is consistent with our interpretation of the
scatterplot in Figure 1.5. There is a strong positive correlation (r = 0.80)
between Murder and Assault, also consistent with the plot in Figure 1.6.
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Fig. 1.5 Scatterplot of murder rate vs percent urban population in USArrests.

1.5 Importing Data

A preliminary task for data analysis is to import data into R. Data sets may
be found on the web, in plain text (space delimited) files, spreadsheets, and
many other formats. R contains utility functions to import data in a variety
of formats. When a data set is imported into R, typically we store it in an
R data.frame object. See the examples of Section 1.4.

In this section we cover various methods of importing data, including:

� Entering data manually.
� Importing data from a plain text (ASCII) local file.
� Importing data given in tabular form on a web page.

1.5.1 Entering data manually

In the first few examples of this chapter we have seen how to enter data
vectors using the c (combine) function. The scan function is sometimes useful
for entering small data sets interactively. See Example 3.1 “Flipping a Coin”
in Chapter 3 for an example.

The concept for this book was originally inspired by students’ questions in
a statistics course. After learning some R basics, students were eager to try
their textbook problems in R, but typically needed help to enter the data.
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Fig. 1.6 An array of scatterplots produced by pairs for the USArrests data.

The next example shows how to enter a very small data set that one might
find among the exercises in a statistics textbook.

Example 1.11 (Data from a textbook). A table of gas mileages on four new
models of Japanese luxury cars is given in Larsen & Marx [30, Ques-
tion 12.1.1], which is shown in Table 1.4. The reader was asked to test if
the four models give the same gas mileage, on average.

Table 1.4 Gas mileage on four models of Japanese luxury cars, from a problem in
Larsen & Marx [30, 12.1.1].

Model
A B C D
22 28 29 23
26 24 32 24

29 28
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To solve the stated problem, we need to enter the data as two variables
(gas mileage and model). One method of doing so is shown below. The rep

(replicate) function is used to create the sequences of letters.

> y1 = c(22, 26)

> y2 = c(28, 24, 29)

> y3 = c(29, 32, 28)

> y4 = c(23, 24)

> y = c(y1, y2, y3, y4)

> Model = c(rep("A", 2), rep("B", 3), rep("C", 3), rep("D", 2))

We see that y and Model have been entered correctly:

> y

[1] 22 26 28 24 29 29 32 28 23 24

> Model

[1] "A" "A" "B" "B" "B" "C" "C" "C" "D" "D"

The data frame is created by

> mileages = data.frame(y, Model)

The character vector Model is converted to a factor by default when the data
frame is created. We can check that the structure of our data frame is correct
using the structure (str) function.

> str(mileages)

�data.frame�: 10 obs. of 2 variables:

$ y : num 22 26 28 24 29 29 32 28 23 24

$ Model: Factor w/ 4 levels "A","B","C","D": 1 1 2 2 2 3 3 3 4 4

and

> mileages

y Model

1 22 A

2 26 A

3 28 B

4 24 B

5 29 B

6 29 C

7 32 C

8 28 C

9 23 D

10 24 D

Our data set is ready for analysis, which is left as an exercise for a later
chapter (Exercise 8.1).

1.5.2 Importing data from a text file

It is often the case that data for analysis is contained in an external file (ex-
ternal to R) in plain text (ASCII) format. The data is typically delimited
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or separated by a special character such as a space, tab, or comma. The
read.table function provides optional arguments such as sep for the sepa-
rator character and header to indicate whether or not the first row contains
variable names.

Example 1.12 (Massachusetts Lunatics). Importing data from a plain text
file can be illustrated with an example of a data set available on the website
“Data and Story Library” (DASL). The Massachusetts lunatics data is avail-
able at http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html.

These data are from an 1854 survey conducted by the Massachusetts Com-
mission on Lunacy. Fourteen counties were surveyed. The data can be copied
from the web page, and simply pasted into a plain text file. Although the
result is not nicely formatted, it is space delimited (columns separated by
spaces). The data is saved in “lunatics.txt” in our current working directory.
This data set should be imported into a data frame that has 14 rows and six
columns, corresponding to the following variables:

1. COUNTY = Name of county
2. NBR = Number of lunatics, by county
3. DIST = Distance to nearest mental health center
4. POP = County population , 1950 (thousands)
5. PDEN = County population density per square mile
6. PHOME = Percent of lunatics cared for at home

Use the read.table function to read the file into a data frame. The argu-
ment header=TRUE specifies that the first line contains variable names rather
than data. Type ?read.table for a description of other possible arguments.

> lunatics = read.table("lunatics.txt", header=TRUE)

The str (structure) function provides a quick check that 14 observations of
six variables were successfully imported.

> str(lunatics)

�data.frame�: 14 obs. of 6 variables:

$ COUNTY: Factor w/ 14 levels "BARNSTABLE","BERKSHIRE",..

$ NBR : int 119 84 94 105 351 357 377 458 241 158 ...

$ DIST : int 97 62 54 52 20 14 10 4 14 14 ...

$ POP : num 26.7 22.3 23.3 18.9 82.8 ...

$ PDEN : int 56 45 72 94 98 231 3252 3042 235 151 ...

$ PHOME : int 77 81 75 69 64 47 47 6 49 60 ...

Now since lunatics is a relatively small data set, we can simply print it to
view the result of read.table that we used to import the data. Typing the
name of the data set causes it to be printed (displayed) at the console.

> lunatics

COUNTY NBR DIST POP PDEN PHOME

1 BERKSHIRE 119 97 26.656 56 77

2 FRANKLIN 84 62 22.260 45 81

3 HAMPSHIRE 94 54 23.312 72 75

4 HAMPDEN 105 52 18.900 94 69

http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html
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5 WORCESTER 351 20 82.836 98 64

6 MIDDLESEX 357 14 66.759 231 47

7 ESSEX 377 10 95.004 3252 47

8 SUFFOLK 458 4 123.202 3042 6

9 NORFOLK 241 14 62.901 235 49

10 BRISTOL 158 14 29.704 151 60

11 PLYMOUTH 139 16 32.526 91 68

12 BARNSTABLE 78 44 16.692 93 76

13 NANTUCKET 12 77 1.740 179 25

14 DUKES 19 52 7.524 46 79

The Massachusetts lunatics data set is discussed in Example 7.8 of our re-
gression chapter.

In the example above, the data in the file “lunatics.txt” is delimited by
space characters. Often data is found in a spreadsheet format, delimited by
tab characters or commas.

For tab-delimited files, simply change the sep argument to the tab charac-
ter \t. An example appears in Chapter 5 on exploratory data analysis, where
the tab-delimited data file “college.txt” is imported using the command

dat = read.table("college.txt", header=TRUE, sep="\t")

Rx 1.12 The simplest way to import spreadsheet data is to save it in .csv
format (comma separated values) or a tab-delimited format. The worksheet
should contain only data and possibly the header with names. For .csv files,
use the read.table function with sep="," as shown below

> lunatics = read.table("lunatics.csv", header=TRUE, sep=",")

or use read.csv for this type of file:

> lunatics = read.csv("lunatics.csv")

1.5.3 Data available on the internet

Many of the interesting data sets that one may wish to analyze are available
on a web page. R provides an easy way to access data from a file on the
internet using the URL of the web page. The function read.table can be used
to input data directly from the internet. This is illustrated in the following
example.

Example 1.13 (Digits of π). The data file“PiDigits.dat”contains the first 5000
digits of the mathematical constant π = 3.1415926535897932384 . . . . The data
is one of the Statistical Reference Datasets provided by the National Institute
of Standards and Technology (NIST).2 Documentation is inserted at the top
of the file, and the digits start on line 61. We use the read.table function

2 http://www.itl.nist.gov/div898/strd/univ/pidigits.html

http://www.itl.nist.gov/div898/strd/univ/pidigits.html
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with the complete URL3 (web address) and skip=60 to read the data starting
at line 61. We display the first six digits to check the result:

pidigits = read.table(

"http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat",

skip=60)

head(pidigits)

V1

1 3

2 1

3 4

4 1

5 5

6 9

Here although we have only one variable, our data pidigits is a data
frame. The data frame was automatically created because we used read.table
to import the data and a default label of V1 assigned to the single variable.

Are the digits of π uniformly distributed? The digits can be summarized
in a table by the table function and summarized graphically in a plot.

> table(pidigits)

pidigits

0 1 2 3 4 5 6 7 8 9

466 531 496 461 508 525 513 488 491 521

For easier interpretation, it is more convenient to summarize proportions. We
can convert the table to proportions in one step by dividing by 5000; this is
another example of vectorized operations.

> prop = table(pidigits) / 5000 #proportions

> prop

pidigits

0 1 2 3 4 5 6 7 8 9

0.0932 0.1062 0.0992 0.0922 0.1016 0.1050 0.1026 0.0976 0.0982 0.1042

Recall that the variance of a sample proportion is p(1 − p)/n. If the true
proportion is 0.1 for every digit, then the standard error (se) is

> sqrt(.1 * .9 / 5000)

[1] 0.004242641

However, if the true proportions are unknown, the sample estimates of pro-
portions are used. In this case we obtain slightly different results for se. In the
calculation of se the constants 0.1 and 0.9 are replaced by vectors of length
10, so the result is a vector of length 10 rather than a scalar. We can display
the sample proportion plus or minus two standard errors using vectorized
arithmetic. The rbind function is handy to collect the results together into a

3 The URL should be enclosed in quotes and on a single line; otherwise an error
message “cannot open the connection” occurs.

http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat
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matrix for display. We round the result and include the estimate of standard
error in the display.

> se.hat = sqrt(prop * (1-prop) / 5000)

> round(rbind(prop, se.hat, prop-2*se.hat, prop+2*se.hat), 4)

0 1 2 3 4 5 6

prop 0.0932 0.1062 0.0992 0.0922 0.1016 0.1050 0.1026

se.hat 0.0041 0.0044 0.0042 0.0041 0.0043 0.0043 0.0043

0.0850 0.0975 0.0907 0.0840 0.0931 0.0963 0.0940

0.1014 0.1149 0.1077 0.1004 0.1101 0.1137 0.1112

7 8 9

prop 0.0976 0.0982 0.1042

se.hat 0.0042 0.0042 0.0043

0.0892 0.0898 0.0956

0.1060 0.1066 0.1128

Here we see that none of the sample proportions falls outside of the interval
0.1±2 ŝe.

A barplot helps to visualize the tabulated data. A horizontal reference line
is added through 0.1 using abline. The plot is shown in Figure 1.7.

barplot(prop, xlab="digit", ylab="proportion")

abline(h = .1)
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Fig. 1.7 Barplot of proportion of digits in the mathematical constant π.
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1.6 Packages

R functions are grouped into packages, such as the base package, datasets,
graphics, or stats. A number of recommended packages are included in the
R distribution; some examples are boot (bootstrap), MASS [50], and lattice

(graphics). In addition, thousands of contributed packages are available to
install. Type the command

library()

to display a list of installed packages. For example, on our system currently
this command produces a list starting with

Packages in library �C:/R/R-2.13.0/library�:

base The R Base Package

boot Bootstrap R (S-Plus) Functions (Canty)

bootstrap Functions for the Book "An Introduction to the

Bootstrap"

...

Each of these packages is currently installed on our system. The base and
boot packages were automatically installed. We installed the bootstrap pack-
age [31] through the Packages menu. Although there is excellent support for
bootstrap in the boot package, we also want to have access to the data sets
for the book An Introduction to the Bootstrap by Efron and Tibshirani [14],
which are available in the bootstrap package.

Example 1.14 (Using the bootstrap package). Suppose that we are interested
in the examples related to the “law” data in the bootstrap package. Typing
law at the prompt produces the following error because no object named
“law” is found on the R search path.

> law

Error: object �law� not found

We get a similar warning with

> data(law)

Warning message:

In data(law) : data set �law� not found

In order to use law we first install the bootstrap package. This can be
done in the R GUI using the Packages menu, or by typing the command

install.packages("bootstrap")

The system will prompt the user to select a server:

--- Please select a CRAN mirror for use in this session ---

and after the server is selected, the package will be installed. The only time
that the package needs to be re-installed is when a new version of R is in-
stalled. A list of data files in the bootstrap package is displayed by
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> data(package="bootstrap")

However, to use the objects in the package, one first needs to load it using
the library function,

> library(bootstrap)

and then the objects in the package will be available. Loading the package
with the library function typically needs to be done once in each new R
session (each time the program is opened). Another useful feature of the
library function is to get help for a package: either of the following display
a summary of the package.

library(help=bootstrap)

help(package=bootstrap)

Finally, we want to use the law data, which is now loaded and accessible in
the R workspace.

> library(bootstrap)

> law

LSAT GPA

1 576 339

2 635 330

3 558 281

4 578 303

5 666 344

6 580 307

7 555 300

8 661 343

9 651 336

10 605 313

11 653 312

12 575 274

13 545 276

14 572 288

15 594 296

For example, we may want to compute the sample means or the correlation
between LSAT scores and GPA.

> mean(law)

LSAT GPA

600.2667 309.4667

> cor(law$LSAT, law$GPA)

[1] 0.7763745

After installing R, and periodically thereafter, one should update packages
using update.packages or the Packages menu.

Searching for data or methods in packages

With thousands of contributed packages available for R, it is likely that what-
ever method one would like to apply has been implemented in an R package.
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Many well known data sets can also be found in R packages. To search any
installed packages, use help.search or ??. Keep in mind that help.search
and ?? do not search outside of the current R installation.

For example, suppose that we are trying to find a data set on heights of
fathers and sons. We can try ??height but none of the hits seem relevant.
Next we go to the R homepage at www.r-project.org and click on Search.
Using the R site search we get several relevant hits. The data set galton

in package UsingR [51] is relevant (“Galton’s height data for parents and
children”) and we also find a link to the data set father.son in UsingR,
which is exactly what we were looking for. We can install the package UsingR
and the father.son data will be available after loading the package with
library(UsingR).

One way to find an implementation of a particular method is to search
on the R home page at www.r-project.org. A good general resource is to
consult one or more of the Task Views (see page 38).

1.7 The R Workspace

When the user ends an R session by closing the R GUI or typing the quit
command q(), a dialog appears asking “Save workspace image?”. Usually one
would not need to save the workspace image. Data is typically saved in files
and reusable R commands should be saved in scripts.

One can list the objects in the current workspace by the command ls() or
objects(). Starting with a new R session and no previously saved workspace,
ls() returns an empty list.

> ls()

character(0)

After running the script “horsekicks.R” on page 11, a few objects have been
added to the workspace. These objects will persist until the R session is ended
or until removed or redefined by the user.

> source("/Rx/horsekicks.R")

[1] 0.545 0.325 0.110 0.015 0.005

[1] 0.61

[1] 0.6109548

k p f

[1,] 0 0.545 0.543350869

[2,] 1 0.325 0.331444030

[3,] 2 0.110 0.101090429

[4,] 3 0.015 0.020555054

[5,] 4 0.005 0.003134646

The ls function displays the names of objects that now exist in the R
workspace.

> ls()

[1] "f" "k" "p" "r" "v" "x"

http://www.r-project.org
http://www.r-project.org
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To remove an object from the workspace use the rm or remove function.

> rm("v")

> ls()

[1] "f" "k" "p" "r" "x"

> remove(list=c("f", "r"))

> ls()

[1] "k" "p" "x"

If the workspace is saved upon exiting at this point, k, p, and x will be
saved. However, saving a workspace combined with human error can lead to
unnoticed serious programming errors. A typical example is when one forgets
to define an object such as x but because it was already in the workspace
(unintended and incorrect values for x) the R code may run without any
reported errors. The unsuspecting user may never know that the analysis
was completely wrong.

Finally to restore the R workspace to the “fresh” condition with no user-
defined objects in the workspace, we can use the following code. This removes
all objects listed by ls() without warning.

rm(list = ls())

This is best done at the beginning or the end of a session. Wait until the end
of this chapter to try it.

1.8 Options and Resources

The options function

For more readable tables of data, we may want to round the displayed data.
This can be done by explicitly rounding what is to be displayed:

> pi

[1] 3.141593

> round(pi, 5)

[1] 3.14159

Alternately, there is an option that governs the number of digits to display
that can be set. The default is digits=7.

> options(digits=4)

> pi

[1] 3.142

To see the current values of options, type options(). Another option that
helps to control the display is width; it controls how many characters are
printed on each line. Illustrated below are two ways to get the current value
of the width option, and changing the width option.
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> options()$width #current option for width

[1] 70

> options(width=60) #change width to 60 characters

> getOption("width") #current option for width

[1] 60

Graphical parameters: par

Another set of options, for graphical parameters, is controlled by the par

function. A useful one to know is how to change the “prompt user for next
graph” behavior. It can be turned on/off by changing the graphics parameter
ask; for example, to turn this prompt off:

par(ask = FALSE)

Another option that we use in this book is mfrow or mfcol to control how
many figures are displayed in the current graphics window. For example,
par(mfrow=c(2, 2)) will present figures in a 2 by 2 array, by row. The
graphical parameters that can be set using par are described in the help
topic ?par.

Rx 1.13 There are so many possible parameters to graphics functions, that
usually only a subset of them are listed in the documentation. For example,
the plot help page starts with

Generic function for plotting of R objects. For more

details about the graphical parameter arguments, see �par�.

The par help page contains further documentation for plot and other graph-
ics functions.

Graph history

In Windows, when a graphics window is active (on top), one can select Record-
ing from the History menu. This has the effect of storing any graphs that
are subsequently displayed, so that the user can use the page up/page down
keys to page through the graphs.

If you construct multiple plots on a Macintosh, then with the graph se-
lected, you can go Back or Forward from the Quartz menu to see previous
graphs.
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Other resources

In addition to the manuals, frequently asked questions (FAQ), and online
help included with R, there are many contributed files and web pages with
excellent tutorials, examples, and explanations. A list is available on the R
web site.4

Task Views

“Task Views” for different types of statistical analyses are available on CRAN.
Go to the R project home page at www.r-project.org and click on CRAN,
then choose a mirror site near you. The CRAN page has a link to Task
Views on several subjects. A Task View lists functions and packages that
are related to the named task, such as “Bayesian”, “Multivariate” or “Time
Series”. A direct link is http://cran.at.r-project.org/web/views/.

External resources

In addition to materials found on the R project website, there are many
useful materials to be found on the web. There is an interesting collection of
information and examples in R Wiki,5 including the list of examples in the
R Graph Gallery. There is also a list of other R Wiki’s. A nicely organized
external resource is “Quick R: for SAS/SPSS/Stata Users” at http://www.
statmethods.net/index.html.

The R Graph Gallery and R Graphical Manual

For more experienced R users, a great resource for graphics is the R Graph
Gallery.6 We display the Gallery’s home page and click on ‘Thumbnails’ to
view small images of the graphs. Each graph includes the corresponding R
code to produce the graph. Alternately one can select graphs by keyword
or simply browse. The R Graphical Manual7 illustrates thousands of graphs
organized by image, task view, data set, or package.

4 Contributed documentation, http://cran.r-project.org/other-docs.html
5 R Wiki, http://rwiki.sciviews.org/doku.php
6 R Graph Gallery, http://addictedtor.free.fr/graphiques/
7 R Graphical Manual, http://rgm2.lab.nig.ac.jp/RGM2/images.php?show=all

http://www.r-project.org
http://cran.at.r-project.org/web/views/
http://www.statmethods.net/index.html.
http://cran.r-project.org/other-docs.html
http://rwiki.sciviews.org/doku.php
http://addictedtor.free.fr/graphiques/
http://rgm2.lab.nig.ac.jp/RGM2/images.php?show=all
http://www.statmethods.net/index.html.
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1.9 Reports and Reproducible Research

Most data analysis will be summarized in some type of report or article.
The process of “copy and paste” for commands and output can lead to errors
and omissions. Reproducible research refers to methods of reporting that
combine the data analysis, output, graphics, and written report together in
such a way that the entire analysis and report can be reproduced by others.
Various formats for reports may include word processing documents, LATEX,
or HTML.

The Sweave function in R facilitates generating this type of report. There
is a LATEX package (Sweave) that generates a .tex file from the Sweave
output. Various other packages such as R2wd (R to Word), R2PPT (R to
PowerPoint), odfWeave (open document format), R2HTML (HTML), can be
installed. Commercial packages are also available (e.g. RTFGen and Infer-
ence for R). For more details see the Task View “Reproducible Research” on
CRAN.8

Exercises

1.1 (Normal percentiles). The qnorm function returns the percentiles
(quantiles) of a normal distribution. Use the qnorm function to find the 95th

percentile of the standard normal distribution. Then, use the qnorm function
to find the quartiles of the standard normal distribution (the quartiles are
the 25th, 50th, and 75th percentiles). Hint: Use c(.25, .5, .75) as the first
argument to qnorm.

1.2 (Chi-square density curve). Use the curve function to display the
graph of the χ2(1) density. The chi-square density function is dchisq.

1.3 (Gamma densities). Use the curve function to display the graph of the
gamma density with shape parameter 1 and rate parameter 1. Then use the
curve function with add=TRUE to display the graphs of the gamma density
with shape parameter k and rate 1 for 2,3, all in the same graphics window.
The gamma density function is dgamma. Consult the help file ?dgamma to see
how to specify the parameters.

1.4 (Binomial probabilities). Let X be the number of “ones” obtained in
12 rolls of a fair die. Then X has a Binomial(n = 12,p = 1/3) distribution.
Compute a table of binomial probabilities for x = 0,1, . . . ,12 by two methods:

a. Use the probability density formula

P (X = k) =
(

n

k

)
pk(1−p)n−k

8 http://cran.at.r-project.org/web/views/ReproducibleResearch.html.

http://cran.at.r-project.org/web/views/ReproducibleResearch.html
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and vectorized arithmetic in R. Use 0:12 for the sequence of x values and
the choose function to compute the binomial coefficients

(n
k

)
.

b. Use the dbinom function provided in R and compare your results using
both methods.

1.5 (Binomial CDF). Let X be the number of “ones” obtained in 12 rolls
of a fair die. Then X has a Binomial(n = 12,p = 1/3) distribution. Compute
a table of cumulative binomial probabilities (the CDF) for x = 0,1, . . . ,12 by
two methods: (1) using cumsum and the result of Exercise 1.4, and (2) using
the pbinom function. What is P (X > 7)?

1.6 (Presidents’ heights). Refer to Example 1.2 where the heights of the
United States Presidents are compared with their main opponent in the pres-
idential election. Create a scatterplot of the loser’s height vs the winner’s
height using the plot function. Compare the plot to the more detailed plot
shown in the Wikipedia article “Heights of Presidents of the United States
and presidential candidates” [54].

1.7 (Simulated“horsekicks”data). The rpois function generates random
observations from a Poisson distribution. In Example 1.3, we compared the
deaths due to horsekicks to a Poisson distribution with mean λ = 0.61, and
in Example 1.4 we simulated random Poisson(λ = 0.61) data. Use the rpois
function to simulate very large (n = 1000 and n = 10000) Poisson(λ = 0.61)
random samples. Find the frequency distribution, mean and variance for the
sample. Compare the theoretical Poisson density with the sample proportions
(see Example 1.4).

1.8 (horsekicks, continued). Refer to Example 1.3. Using the ppois func-
tion, compute the cumulative distribution function (CDF) for the Poisson
distribution with mean λ = 0.61, for the values 0 to 4. Compare these proba-
bilities with the empirical CDF. The empirical CDF is the cumulative sum of
the sample proportions p, which is easily computed using the cumsum func-
tion. Combine the values of 0:4, the CDF, and the empirical CDF in a matrix
to display these results in a single table.

1.9 (Custom standard deviation function). Write a function sd.n simi-
lar to the function var.n in Example 1.5 that will return the estimate σ̂ (the
square root of σ̂2). Try this function on the temperature data of Example
1.1.

1.10 (Euclidean norm function). Write a function norm that will compute
the Euclidean norm of a numeric vector. The Euclidean norm of a vector
x = (x1, . . . ,xn) is

‖x‖ =

√√√√ n∑
i=1

x2
i .

Use vectorized operations to compute the sum. Try this function on the vec-
tors (0,0,0,1) and (2,5,2,4) to check that your function result is correct.
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1.11 (Numerical integration). Use the curve function to display the

graph of the function f(x) = e−x2
/(1 + x2) on the interval 0 ≤ x ≤ 10. Then

use the integrate function to compute the value of the integral∫ ∞

0

e−x2

1+x2 dx.

The upper limit at infinity is specified by upper=Inf in the integrate func-
tion.

1.12 (Bivariate normal). Construct a matrix with 10 rows and 2 columns,
containing random standard normal data:

x = matrix(rnorm(20), 10, 2)

This is a random sample of 10 observations from a standard bivariate normal
distribution. Use the apply function and your norm function from Exercise
1.10 to compute the Euclidean norms for each of these 10 observations.

1.13 (lunatics data). Obtain a five-number summary for the numeric vari-
ables in the lunatics data set (see Example 1.12). From the summary we can
get an idea about the skewness of variables by comparing the median and
the mean population. Which of the distributions are skewed, and in which
direction?

1.14 (Tearing factor of paper). The following data describe the tearing
factor of paper manufactured under different pressures during pressing. The
data is given in Hand et al. [21, Page 4]. Four sheets of paper were selected
and tested from each of the five batches manufactured.

Pressure Tear factor
35.0 112 119 117 113
49.5 108 99 112 118
70.0 120 106 102 109
99.0 110 101 99 104
140.0 100 102 96 101

Enter this data into an R data frame with two variables: tear factor and
pressure. Hint: it may be easiest to enter it into a spreadsheet, and then
save it as a tab or comma delimited file (.txt or .csv). There should be 20
observations after a successful import.

1.15 (Vectorized operations). We have seen two examples of vectorized
arithmetic in Example 1.1. In the conversion to Celsius, the operations in-
volved one vector temps of length four and scalars (32 and 5/9). When we
computed differences, the operation involved two vectors temps and CT of
length four. In both cases, the arithmetic operations were applied element
by element. What would happen if two vectors of different lengths appear
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together in an arithmetic expression? Try the following examples using the
colon operator : to generate a sequence of consecutive integers.
a.

x = 1:8

n = 1:2

x + n

b.

n = 1:3

x + n

Explain how the elements of the shorter vector were “recycled” in each case.
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