
Chapter 8

An Introduction to the Lattice Package

R contains many functions that can be used to draw graphs for specific types of
data.Many of these plotting functions are not available in the packages that are
loaded by default when R is started. Some are as simple to use as the plot
function; others require more effort. The lattice package allows R to reach its
full potential for imaging higher-dimensional data. We used one type of lattice
plot, the multipanel scatterplot, in Section 1.4.1 to plot density of deep-sea
pelagic bioluminescent organisms versus depth.

The lattice package was written byDeepayan Sarkar, who recently published
an excellent book which we highly recommend (Sarkar, 2008). The package
implements the Trellis Graphics framework developed at Bell Labs in the early
1990s.

In Chapter 7 we introduced the coplot function, which is particularly
useful for displaying subsets of data in separate panels, when there is a grouping
structure to the data. The lattice package allows taking this feature much
further, but it comes at the price of more programming effort. However, by
now you should have gained enough proficiency to master the function without
too much difficulty.

8.1 High-Level Lattice Functions

The lattice user interface primarily consists of a number of generic functions
called ‘‘high-level’’ functions, each designed to create a particular type of
statistical display (Table 8.1). Fortunately, it is not necessary to learn each
function individually. They are designed with a similar formula interface for
different types of multipanel conditioning and respond to a large number of
common arguments. Hence, once one function is mastered, learning to use the
other functions is simple.

The plotting is performed by a default panel function embedded in each generic
function that is applied to each panel. Most often the user will not be aware that a
panel function is responding to arguments given in the function call. Names of
default panel functions are generally self-explanatory. For example, the default

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_8, � Springer ScienceþBusiness Media, LLC 2009

169

panel function for the high-level function histogram is panel.histogram, for
densityplot it is panel.densityplot, and for xyplot it is panel.xy-
plot, and so on. These predefined functions are available for you to use and to

modify. We discuss panel functions more fully in Section 8.6.
Table 8.1 shows some of the high-level functions available in lattice.

Do Exercise 1 in Section 8.11. This introduces lattice plots and
provides an overview of the possibilities of the package.

8.2 Multipanel Scatterplots: xyplot

In the exercises in Chapter 4 we used temperature data measured at 30 stations
along the Dutch coastline over a period of 15 years. Sampling took place 0 to 4
times per month, depending on the season. In addition to temperature, salinity
was recorded at the same stations, and these measurements are used here. The
data (in the file RIKZENV.txt) are submitted to the xyplot function to
generate a multipanel scatterplot. The following is the code to enter the data
into R, create a new variable, MyTime, representing time (in days), and create a
multipanel scatterplot.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

Table 8.1 High-level functions of the lattice package

Function Default Display

histogram () Histogram

densityplot () Kernel density plot

qqmath () Theoretical quantile plot

qq () Two-sample quantile plot

stripplot () Stripchart (comparative 1-D scatterplots)

bwplot () Comparative box-and-whisker plots

dotplot () Cleveland dotplot

barchart () Barplot

xyplot () Scatterplot

splom () Scatterplot matrix

contourplot () Contour plot of surfaces

levelplot () False colour level plot of surfaces

wireframe () Three-dimensional perspective plot of surfaces

cloud () Three-dimensional scatterplot

parallel () Parallel coordinates plot

170 8 An Introduction to the Lattice Package

>Env$MyTime <- Env$Year + Env$dDay3 / 365
>library(lattice)

>xyplot(SAL � MyTime | factor(Station), type = "l",
strip = function(bg, ...)
strip.default(bg = ’white’, ...),

col.line = 1, data = Env)

The function xyplot contains characteristics common to all high-level
lattice functions. The most obvious ones are the use of a formula, the vertical
bar (also called the pipe symbol) within the formula, and the data argument.
Lattice uses a formulalike structure that is also used in R for statistical models.
The variable preceding the tilde (the �) is plotted on the y-axis with that
following along the x-axis. The conditioning variable (in this case Station),
which will generate multiple panels, follows the vertical bar.

When there is no conditioning variable, the result of xyplot will be similar
to the normal plot function; the data will be plotted in a single panel. The
conditioning variable is usually a factor (note that we typed: factor (Sta-
tion)), but it may also be a continuous variable. The default behaviour when
using a continuous variable for conditioning is to treat each of its unique values
as a discrete level. Often, however, the variable may contain somany values that
it is advisable to partition it into intervals. This can be achieved by using the
functions shingle and equal.count; see their help pages.

Figure 8.1 displays the data in five rows of 6 panels, showing a graph for each
station. The station name is given in the horizontal bar, called the strip, above
the panel.

The code is not difficult. The graph is drawn by the xyplot function using a
formula to plot salinity versus (�) time, conditional on (|) station. We added two
xyplot arguments: strip, used to create a white background in each strip, and
col.line = 1 to designate black lines (recall from Chapter 5 that the colour 1
refers to black). The two other attributes, type and data, should be familiar;
however, the type attribute in xyplot has more options than in the standard
plot function. For example, type = " r" adds a regression line, type=
" smooth " adds a LOESS fit, type = " g" adds a reference grid, type= " l"
draws a line between the points, and type="a" adds a line connecting the means
of groups within a panel.

The strip argument should contain a logical (either TRUE or FALSE),
meaning either do, or do not, draw strips, or a function giving the necessary
input (in this case strip.default). To see what these options do, run the
basic xyplot command.

> xyplot(SAL � MyTime |factor(Station), data = Env)

Compare this with (results are not shown here):

> xyplot(SAL � MyTime | factor(Station), type = "l",
strip = TRUE, col.line = 1, data = Env)

8.2 Multipanel Scatterplots: xyplot 171

> xyplot(SAL � MyTime | factor(Station), type = "l",
strip = FALSE, col.line = 1, data = Env)

From the graph in Fig. 8.1 we note that some stations have generally

lower salinity levels. Water in the North Sea has a salinity of around 32,

probably because of proximity to rivers or other sources of fresh water

inflow. Salinity values vary among stations, with stations that have lower

values showing greater fluctuations over time. Another point to note is that

some stations show similar patterns; possibly these stations are located near

one another. It is difficult to see whether there is a seasonal pattern in these

data. To investigate this, we can utilise the lattice function, bwplot, to

draw box-and-whisker plots.

Do Exercise 2 in Section 8.11. This is an exercise in using the

xyplot function with a temperature dataset.

MyTime

S
A

L

10

20

30

DANT DREI G6 GROO

1990 2000 1990 2000 1990 2000

HAMM HANS

HUIB LODS MARS N02 N10

10

20

30

N20

10

20

30

N70 R03 R50 R70 SOEL T004

T010 T100 T135 T175 T235

10

20

30

VLIS

10

20

30

W02 W20 W70 WISS ZIJP

1990 2000 1990 2000 1990 2000

ZUID

Fig. 8.1 Multipanel plot showing salinity (SAL) at 30 stations along the Dutch coast over
15 years. Note the differences among stations in spread and average values

172 8 An Introduction to the Lattice Package

8.3 Multipanel Boxplots: bwplot

A box-and-whisker plot, or boxplot, of the salinity data is shown in Fig. 8.2.

The function boxplot was introduced in Chapter 7. The multipanel counter-

part is called bwplot and uses a formula layout similar to the function xyplot.
This time, however, we plot Salinity against Month (numbered 1–12) and

our conditioning variable is not Station, but Area. There are two reasons for

doing this. First, we have seen that some stations show similar patterns and we

know that these are located in the same area. The second reason is that there are

not sufficient data per station for each month to draw meaningful box-and-

whisker plots, so we combine stations and years. Hence, the panels show the

median and spread of the salinity data for each month in each of ten areas. Here

is the code.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)
> bwplot(SAL � factor(Month) | Area,

strip = strip.custom(bg = ’white’),
cex = 0.5, layout = c(2, 5),
data = Env, xlab = "Month", ylab = "Salinity",
par.settings = list(

box.rectangle = list(col = 1),
box.umbrella = list(col = 1),
plot.symbol = list(cex = .5, col = 1)))

The code appears extensive but could have been shorter if we had not wanted

to draw all items in the graph in black and white (by default colours are used). If

colours and labels are not a consideration use (results are not presented here):

> bwplot(SAL � factor(Month) | Area, layout = c(2, 5),
data = Env)

However, this graph is not as appealing, and we continue with the more

extensive code. The list following par.settings is used to set the colour

of the box, the whiskers (called umbrella), and the size and colour of the

open circles (representing the median). We again set the strip colour to

white. We use the layout argument to set the panel arrangement to a

rectangular grid by entering a numeric vector specifying the number of

columns and rows.
The variability in the data, as displayed in Fig. 8.2, differs among the

areas. There also appears to be a cyclic component, probably illustrating a

seasonal effect (e.g., river run-off); however, this is not equally clear for all

areas.

8.3 Multipanel Boxplots: bwplot 173

Do Exercise 3 in Section 8.11 in the use of the bwplot function
using the temperature data.

8.4 Multipanel Cleveland Dotplots: dotplot

The Cleveland dotplot, called dotplot in lattice, was introduced in Chapter 7
as dotchart. Because there are so many data points in the salinity dataset, we
restrict our plot to stations in a single area. The following code produces a
multipanel dotplot, and the resulting graph is in Fig. 8.3.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)

Month

S
al

in
ity

10

20

30

ED

3 4 51 2 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

GM

KZ

10

20

30

NC

10

20

30

NZ OS

VD

10

20

30

VM

10

20

30

WS WZ

Fig. 8.2. Multipanel plot showing salinity for regions over time. Variability in salinity levels
differs among regions

174 8 An Introduction to the Lattice Package

> dotplot(factor(Month) � SAL | Station,
subset = Area=="OS", jitter.x = TRUE, col = 1,
data = Env, strip = strip.custom(bg = ’white’),
cex = 0.5, ylab = "Month", xlab = "Salinity")

The code is similar to that of the xyplot and bwplot functions. We
reversed the order of salinity and month in the formula to ensure that salinity
is plotted along the horizontal axis and month along the vertical axis (so that it
matches the interpretation of the dotchart function; see Chapter 7).

There are two additional arguments in the code, subset and jitter.x.
The subset optionwas used to create a subselection of the data. The OS stands
for the area, Oosterschelde, and jitter.x = TRUE adds a small amount of
random variation in the horizontal direction to show multiple observations
with the same value in the same month.

Figure 8.3 shows data points that appear to be outside the normal range,
potential outliers. It may be advisable to remove these before doing statistical
analyses. However, this is a subjective choice that should not be made lightly.

Salinity

M
on

th

1
2
3
4
5
6
7
8
9

10
11
12

HAMM LODS
1
2
3
4
5
6
7
8
9

10
11
12

WISS

25 30 35

25 30 35

ZIJP

Fig. 8.3 Multipanel dotplot showing the salinity data for the four stations in the OS area.
Each data point is displayed as a dot. The y-axis shows the month and the x-axis the salinity
values. Note the two potential outliers in stations ZIJP and LODS

8.4 Multipanel Cleveland Dotplots: dotplot 175

It is the responsibility of the owner of the data to make sure that data removal

can be justified. It may be that the two low salinity values were the result of

excessive rainfall. If the intent is to relate precipitation with salinity we might

want to keep these data points.

Do Exercise 4 in Section 8.11 in the use of the multipanel dotplot
function using temperature data.

8.5 Multipanel Histograms: histogram

The function histogram in the lattice package can be used to draw multiple

histograms. The code below draws Fig. 8.4.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)
> histogram(� SAL | Station, data = Env,

subset = (Area == "OS"), layout = c(1, 4),
nint = 30, xlab = "Salinity", strip = FALSE,
strip.left = TRUE, ylab = "Frequencies")

Salinity

F
re

qu
en

ci
es

0
5

10
15
20

25 30 35

H
A

M
M

0
5
10
15
20

LO
D

S

0
5

10
15
20

W
IS

S

0
5
10
15
20

Z
IJ

P

Fig. 8.4 A lattice histogram of salinity data for stations of the OS area

176 8 An Introduction to the Lattice Package

Note the slightly different format of the formula (we only need salinity data to
plot the histograms). Again, we only present data for four stations usingsubset.
We have changed the layout so that the panels are arranged vertically and
increased the number of bars, the so-called bins, to 30with thenint argument, as
we found the default number to be too few.We alsomoved the strip to the side of
the panels by setting strip = FALSE and strip.left = TRUE. Within the
OS area there appears to be one station, ZIJP, with generally lower salinity.

To create a density plot, change the function name histogram to densi-
typlot. If the argument for the number of bins is not removed, Rwill ignore it.
Another function for plotting data distributions is qqmath, which draws QQ-
plots. This stands for Quantile–Quantile plots, which are used to compare
distributions of continuous data to a theoretical distribution (most often the
Normal distribution).

8.6 Panel Functions

Panel functions were introduced in Chapter 7 with pairs and coplot.
Remember that they are ordinary functions (see Chapter 6) that are used to
draw the graph in more than one panel.

Panel functions in lattice are executed automatically within each high-level
lattice function. As mentioned in Section 8.1, each default panel function con-
tains the name of its ‘‘parent’’ function, for example, panel.xyplot,
panel.bwplot, panel.histogram, and so on. Thus, when you type
xyplot(y � x | z), R executes: xyplot (y � x | z, panel = panel.
xyplot). The argument panel is used to associate a specific panel function with
the plotting regime. Because a panel function is a function we could have written:

xyplot (y � x | z, panel = function (...) {
panel.xyplot(...)})

The ‘‘...’’ argument is crucial, as it is used to pass on information to the other
functions. Apart from y, x, and z, xyplot calculates a number of parameters
before doing the actual plotting, and those that are not recognized are handed
down to the panel function where they are used if requested. The consequence is
that you can provide arguments to the panel functions at the level of the main
function as well as within the panel function. You can write your own panel
functions, but lattice contains a number of predefined functions that are easier to
use. Panel functions can, and often do, call other panel functions, depending on the
arguments. We discuss three examples of the use of panel functions.

8.6.1 First Panel Function Example

This example again uses the salinity dataset, this time to explore the potential
relationship between rainfall and salinity. There are no precipitation data, so we

8.6 Panel Functions 177

use Month as a continuous variable, assuming that rainfall is linked to time of

year. We restrict the data to a single station (GROO) and condition this subset

on Year. Within xyplot we call three panel functions: panel.xyplot,
panel.grid, and panel.loess. We set limits for Month of 1–12 and

for Salinity of 0–30.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)
> xyplot(SAL � Month | Year, data = Env,

type = c("p"), subset = (Station =="GROO"),
xlim = c(0, 12), ylim = c(0, 30), pch = 19,
panel = function (...){
panel.xyplot(...)
panel.grid(..., h = -1, v = -1)
panel.loess(...)})

The resulting graph is presented in Fig. 8.5. Note how the points are on the

gridlines. This is because panel.grid comes after panel.xyplot in the

panel function. If you reverse the order of panel.grid and panel.xyplot,
the grid is automatically drawn first. The panel function panel.loess adds

a smoothing line. The amount of smoothing can be controlled by adding

span = 0.9 (or any other value between 0 and 1) as a main attribute to

xyplot (see Hastie and Tibshiranie (1990) for details on LOESS smoothing

and span width).
We included options in the panel.grid function to align the vertical and

horizontal gridlines with the axes labels. A positive number for h and v specifies

the number of horizontal and vertical gridlines. If negative values for h and v
are specified, R will try to align the grid with the axes labels. Experiment with

different values for h and v, and see what happens.
Another important point is that, without including panel.xyplot in the code,

the data points will not be plotted. Because Year is interpreted as a continuous

variable, the strip has a different format than if Year were a factor. The year is

represented by a coloured vertical bar in the strip. This is not very useful, and it

is probably advisable to define year as a factor, so that it will print the values for

year in the strips.
The data show clear signs of seasonality, although there is apparent variation

in the annual salinity patterns. Nearly the same figure can be obtained with:

> xyplot(SAL � Month | Year, data = Env,
subset = (Station == "GROO"), pch = 19,
xlim = c(0, 12), ylim = c(0, 30),
type = c("p", "g", "smooth"))

178 8 An Introduction to the Lattice Package

Note that the type argument has the values "p" , "g" and"smooth’’.As a
result, the xyplot function executes the panel.xyplot, panel.grid, and
panel.smooth functions.

8.6.2 Second Panel Function Example

The second example presents the multipanel Cleveland dotplot shown in
Fig. 8.3, this time using a different colour and increased size for the dots
representing potential outliers. The graph is shown in Fig. 8.6. Because this
book is in greyscale, the two larger red points are printed in black.

Figure 8.6 can be created by two methods. The first option is to use the same
code as in Section 8.4, and add the code cex = MyCex as the main argument,
where MyCex is a vector of the same length as SAL with predefined values for
cex. The second option is to determine values for cex in the panel function.
The following demonstrates the second approach.

Month

S
A

L

5
10

15
20
25

Year Year Year Year

Year Year Year

5

10
15
20
25

Year

5
10
15
20
25

Year Year Year Year

Year Year Year

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

5
10
15
20
25

Year

Fig. 8.5 Scatterplots of Salinity versus Month over the course of 16 years, with the
addition of a grid and a smoothing line. The data show a clear seasonal pattern. Because
Year is not defined as a factor, they are represented by vertical lines in the strips

8.6 Panel Functions 179

A cut-off level for increasing the point size and changing its colour was set at

salinity lower than the median minus three times the difference between the

third and first quartiles. Note that this is a subjective cut-off level. The following

code was used.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)
> dotplot(factor(Month) � SAL | Station, pch = 16,

subset = (Area=="OS"), data = Env,
ylab = "Month", xlab = "Salinity",
panel = function(x, y, ...) {

Q <- quantile(x, c(0.25, 0.5, 0.75) ,
na.rm = TRUE)

R <- Q[3] - Q[1]
L <- Q[2] - 3 * (Q[3] - Q[1])
MyCex <- rep(0.4, length(y))
MyCol <- rep(1, length(y))

Salinity

M
on

th

1
2
3
4
5
6
7
8
9

10
11
12

25 30 35

HAMM LODS
1
2
3
4
5
6
7
8
9

10
11
12

WISS

25 30 35

ZIJP

Fig. 8.6 Multipanel Cleveland dotplot with potential outliers shown by a larger dot size

180 8 An Introduction to the Lattice Package

MyCex[x < L] <- 1.5
MyCol[x < L] <- 2
panel.dotplot(x, y, cex = MyCex,

col = MyCol, ...)})

The main arguments are the formula, data, xlab, and ylab. The panel
function has as arguments x, y, and ‘‘...’’. This means that inside the panel

function, x contains the salinity data for a specific station, andy the correspond-

ing months. Inside a panel, the x and the y constitute a subset of the data

corresponding to a particular station. The ‘‘...’’ is used to pass on general settings

such as the pch value. The quantile function is used to determine the first and

third quantiles and the median. The cut-off level is specified (L), and all x values

(salinity) smaller than L are plotted with cex = 1.5 and col = 2. All other

values have the values cex = 0.4 and col = 1. The code can be further

modified to identify considerably larger salinity values. In this case, L and x< L
must be changed. We leave this as an exercise to the reader.

8.6.3 Third Panel Function Example*

This section discusses graphing tools that can be used to illustrate the outcome

of a principal component analysis (PCA). It is marked with an asterisk, as the

material is slightly more difficult, not with respect to the R code, but due to the

use of multivariate statistics. It is an exception in being one of the few parts of

this book that requires knowledge of statistics to follow the text. If the graph in

Fig. 8.7 looks interesting, read on.
Figure 8.7 shows four biplots.1 The data used here are morphometric mea-

surements taken on approximately 1000 sparrows (Chris Elphick, University of

Connecticut, USA). Zuur et al. (2007) used these data to explain PCA in detail.
The interpretation of a PCA biplot depends on various choices, and a full

discussion is outside the scope of this text. See Jolliffe (2002) or Zuur et al.

(2007) for details. In this case, the morphometric variables are represented as

lines from the origin to a point, with coordinates given by the loadings of the

first two axes. The specimens are presented as points with coordinates given by

the scores of the first two axes. Depending on the chosen scaling, loading and/or

scores need to be multiplied by corresponding eigenvalues (Jolliffe, 2002).
The biplot allows us to make statements of which variables are correlated,

which specimens are similar, and whether specimens show high (or low) values

1 A biplot is a tool to visualise the results of multivariate techniques such as principal
component analysis, correspondence analysis, redundancy analysis, or canonical correspon-
dence analysis. Using specific rules in the PCA biplot, correlations (or covariances) among the
original variables, relationships among observations, and relationships between observations
and variables can be inferred. There are various ways to scale the biplot, and the interpretation
of the biplot depends on this scaling.

8.6 Panel Functions 181

for particular variables. These statements are based on the directions of the
lines and positions of the points. Lines pointing in a similar direction
correspond to positively correlated variables, lines with an angle of 90
degrees correspond to variables that have a small correlation, and lines
pointing in (approximately) opposite directions correspond to negatively
correlated variables. There are also criteria for comparing points and com-
paring the points to the lines. The interested reader is referred to the
aforementioned literature.

The sampled sparrows can be separated into two sexes and two species
(SESP and SSTS). The following code was used to create Fig. 8.7.

> setwd("C:/RBook")
> Sparrows <- read.table(file = "Sparrows.txt",

header = TRUE)

Axis 1

A
xi

s
2

–1.0

–0.5

0.0

0.5

1.0

–1.0 –0.5 0.0 0.5 1.0

Wingcrd
Tarsus

Head
Culmen

Nalospi

Wt

SESP
Female

Wingcrd
Tarsus

Head
CulmenNalospi

Wt

SSTS
Female

Wingcrd

Tarsus
HeadCulmen

Nalospi

Wt

SESP
Male

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

Wingcrd

Tarsus

HeadCulmen
Nalospi

Wt

SSTS
Male

Fig. 8.7 Multipanel principal component analysis biplots. Each panel shows a biplot obtained
by applying PCA (using the correlation matrix) to a dataset. SESP and SSTS represent the
species seaside sparrows (Ammodramus maritimus) and saltmarsh sharp-tailed sparrows
(Ammodramus caudacutus). The graphs indicate that the nalospi, culmen, and head measure-
ments are correlated, and this makes sense as these are all nested subsets of each other. Wing
length, mass, and tarsus on the other hand are indicators of the overall structure size of the
bird, so again it makes sense that these are correlated (as suggested by the biplots), but not
necessarily correlated with the first three

182 8 An Introduction to the Lattice Package

> library(lattice)
> xyplot(Wingcrd � Tarsus | Species * Sex,

xlab = "Axis 1", ylab = "Axis 2", data = Sparrows,
xlim = c(-1.1, 1.1), ylim = c(-1.1, 1.1),
panel = function(subscripts, ...){

zi <- Sparrows[subscripts, 3:8]
di <- princomp(zi, cor = TRUE)
Load <- di$loadings[, 1:2]
Scor <- di$scores[, 1:2]
panel.abline(a = 0, b = 0, lty = 2, col = 1)
panel.abline(h = 0, v = 0, lty = 2, col = 1)
for (i in 1:6){

llines(c(0, Load[i, 1]), c(0, Load[i, 2]),
col = 1, lwd = 2)

ltext(Load[i, 1], Load[i, 2],
rownames(Load)[i], cex = 0.7)}

sc.max <- max(abs(Scor))
Scor <- Scor / sc.max
panel.points(Scor[, 1], Scor[, 2], pch = 1,

cex = 0.5, col = 1)
})

The xlab, ylab, and data arguments are familiar. The first part of

the equation, Wingcrd � Tarsus, is used to set up the graph. There was

no specific reason for choosing to use these two variables in the formula.

The portion of the code following the | symbol is new. So far, we have

only used one conditioning variable, but in this case there are two, Spe-
cies and Sex. As a result, the lower two panels in the graph show the

female data, and the upper two panels show the data from males. Change

the order of Species and Sex to see what happens. Note that both

variables are defined as characters in the data file; hence R automatically

treats them as factors.
The xlim and ylim values require some statistical explanation. The out-

come of a PCA can be scaled so that its numerical information (scores) for a

graph fits between �1 and 1. See Legendre and Legendre (1998) for mathema-

tical details.
It is also important when constructing the graph to ensure that the distance

in the vertical direction is the same as in the horizontal direction to avoid

distortion of the angles between lines.
We now address the more difficult aspect, the panel function. The vector

subscripts automatically contains the row number of the selected data in

the panel function. This allows us to manually extract the data that are

being used for a certain panel using Sparrows[subscripts, 3:8]. The
3:8 designates the variables Wingcrd, Tarsus, Head, Culmen, Nalospi,

8.6 Panel Functions 183

and Wt.2 The princomp function applies principal component analysis, and
loadings and scores of the first two axes are extracted. The two panel.ab-
line functions draw the axes through the origin. The loop (see Chapter 6)
is used to draw the lines and to add the labels for all variables. The
functions llines and ltext do the work. Finally, we rescale all the scores
between �1 and 1, and add them as points with the panel.xyplot
function.

The resulting biplots show how the correlations among the morphometric
variables differ according to sex and species.

The code can easily be extended to allow for triplots obtained by redundancy
analysis or canonical correspondence analysis (see the functions rda and cca
in the package vegan).

Full details on PCA and biplots and triplots can be found in Jolliffe (2002),
Legendre and Legendre (1998), and Zuur et al. (2007), amongmany other sources.

Do Exercise 6 in Section 8.11 on the use of panel functions using the
temperature data.

8.7 3-D Scatterplots and Surface and Contour Plots

Plots for displays of three variables, sometimes called trivariate displays, can be
generated by the functions cloud, levelplot, contourplot, and wire
frame. In our opinion, three-dimensional scatterplots are not always useful.
But they look impressive, and we briefly discuss their creation. Below is an
example of the function cloud, applied to the Dutch environmental dataset,
which produces three-dimensional scatterplots showing the relationships
among chlorophyll-a, salinity, and temperature. The code is fairly simple, and
the resulting graph is presented in Fig. 8.8.

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)
> cloud(CHLFa � T * SAL | Station, data = Env,

screen = list(z = 105, x = -70),
ylab = "Sal.", xlab = "T", zlab = "Chl. a",
ylim = c(26, 33), subset = (Area=="OS"),
scales = list(arrows = FALSE))

2 In Chapter 2 we provided an explanation for Wingcrd, Tarsus, Head, and Wt. Culmen
measures the length of the top of the bill from the tip to where feathering starts, and Nalospi
the distance from the bill top to the nostril.

184 8 An Introduction to the Lattice Package

The function cloud uses several arguments that we have not previously intro-

duced. The optionscreen is used to denote the amount of rotation about the axes

in degrees. With arrows = FALSEwe removed arrows that are normally plotted

along the axes of three-dimensional graphs to indicate the direction inwhich values

increase. Consequently, axis tick marks, which by default are absent, are now

shown. We limited the y-axis values to between 26 and 33.
The functions levelplot, contourplot, and wireframe are used to

plot surfaces. This generally involves predicting values on a regular grid by

statistical functions, which is outside the scope of this book. More information

on these functions can be found in their help pages.

8.8 Frequently Asked Questions

There are a number of things that we have often found ourselves modifying

when making lattice plots. The following are some that we have found useful.

0
5

10
15

20

2627282930313233

10

20

30

40

50

T

Sal.

Chl. a

HAMM

0
5

10
15

20

2627282930313233

10

20

30

40

50

T

Sal.

Chl. a

LODS

0
5

10
15

20

2627282930313233

10

20

30

40

50

T

Sal.

Chl. a

WISS

0
5

10
15

20

2627282930313233

10

20

30

40

50

T

Sal.

Chl. a

ZIJP

Fig. 8.8 Three-dimensional scatterplot of chlorophyll-a, salinity, and temperature

8.8 Frequently Asked Questions 185

8.8.1 How to Change the Panel Order?

By default panels are drawn starting from the lower-left corner, proceeding to the

right, and then up. This sequence can be changed by setting as.table = TRUE
in a high-level lattice call, resulting in panels being drawn from the upper-left

corner, going right, and then down.
The order of the panels can also be changed by defining the condition

variable as a factor, and changing the level option in the factor function.

Figure 8.9 shows a multipanel scatterplot of abundance of three bird species on

three islands in Hawaii. The data were analysed in Reed et al. (2007). The

problem with the graph is that the time series are arranged randomly with

respect to species and island, which makes comparisons among time series of

bird abundance of an island, or of an individual species, more difficult.

Figure 8.10 on the other hand, shows the time series of each island in rows, and

time series of each species in the columns. This makes the comparison of trends

with respect to individual species or islands much easier. So, how did we do it?
The following code imports the data and uses the as.matrix and as.vec-

tor commands to concatenate the eight abundance time series into a single

long vector. The as.matrix command converts the data frame into a matrix,

which allows as.vector tomake the conversion to a long vector; as.vector
will not work with a data frame. The rep function is used to create a single long

vector containing eight repetitions of the variable Year.

Time

B
ird

 a
bu

nd
an

ce

0

500

1000

1500

2000
Coot_Kauai_Niihau Coot_Maui

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

Coo_Oahu

Moorhen_Kauai Moorhen_Oahu

0

500

1000

1500

2000
Stilt_Kauai_Niihau

0

500

1000

1500

2000
Stilt_Maui

1960 1970 1980 1990 2000

Stilt_Oahu

Fig. 8.9 Time series abundances of three bird species on three islands of Hawaii

186 8 An Introduction to the Lattice Package

> setwd("C:/RBook")
> Hawaii <- read.table("waterbirdislandseries.txt",

header = TRUE)
> library(lattice)
> Birds <- as.vector(as.matrix(Hawaii[, 2:9]))
> Time <- rep(Hawaii$Year, 8)
> MyNames <- c("Stilt_Oahu", "Stilt_Maui",

"Stilt_Kauai_Niihau","Coot_Oahu",
"Coot_Maui", "Coot_Kauai_Niihau",
"Moorhen_Oahu","Moorhen_Kauai")

> ID <- rep(MyNames, each = 48)

The rep function is also used to define a single long vector ID in which each

name is repeated 48 times, as each time series is of length 48 years (see Chapter 2).

Figure 8.9 was made with the familiar code:

> xyplot(Birds � Time | ID, ylab = "Bird abundance",
layout = c(3, 3), type = "l", col = 1)

The layout option tells R to put the panels in 3 rows and 3 columns with

points connected by a black line.

Time

B
ird

 a
bu

nd
an

ce

0

500

1000

1500

2000
Stilt_Oahu Stilt_Kauai_Niihau Stilt_Maui

Coot_Oahu Coot_Kauai_Niihau

0

500

1000

1500

2000
Coot_Maui

0

500

1000

1500

2000
Moorhen_Oahu

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

1960 1970 1980 1990 2000

Moorhen_Kauai

Fig. 8.10 Time series of abundance of three bird species on three islands of Hawaii. Note that
time series of an island are arranged vertically, and time series of a species are horizontal

8.8 Frequently Asked Questions 187

To change the order of the panels, change the order of the levels of the factorID:

> ID2 <- factor(ID, levels = c("Stilt_Oahu",
"Stilt_Kauai_Niihau", "Stilt_Maui",
"Coot_Oahu", "Coot_Kauai_Niihau", "Coot_Maui",
"Moorhen_Oahu", "Moorhen_Kauai"))

Note the change in the order of the names. Rerunning the same xyplot
command, but with ID replaced by ID2, produces Fig. 8.10. Determining the
order of the levels within the factor ID2 (the names of the bird/island combina-
tions) is a matter of trial and error.

8.8.2 How to Change Axes Limits and Tick Marks?

The most direct way to influence the range of values on the axes is by using
xlim and ylim; however, this will result in the same limits on both the x and y
axes of all panels. The scales option is more versatile. It can be used to define
the number of tick marks, the position and labels of ticks, and also the scale of
individual panels.

In Figure 8.10 the vertical ranges of the time series differ among the panels.
This is obviously because some species are more abundant than others. How-
ever, if we want to compare trends over time, we are less interested in the
absolute values. One option is to standardise each time series. Alternatively,
we can allow each panel to set its own range limits on the y-axis. This is done as
follows (after entering the code from the previous subsection).

> xyplot(Birds � Time|ID2, ylab = "Bird abundance",
layout = c(3, 3), type = "l", col = 1,
scales = list(x = list(relation = "same"),

y = list(relation = "free")))

The option scales can contain a list that determines attributes of both axes.
In this case, it specifies that the x-axes of all panels have the same range, but sets
a vertical range of each panel appropriate to the data. The resulting graph is
presented in Fig. 8.11.

To change the direction of the tick marks inwards use the following code.

> xyplot(Birds � Time|ID2, ylab = "Bird abundance",
layout = c(3, 3), type = "l", col = 1,
scales = list(x = list(relation = "same"),

y = list(relation = "free"),
tck = -1))

The tck = -1 is within the list argument of the scales option. There are
many more arguments for scales; see the xyplot help file.

188 8 An Introduction to the Lattice Package

8.8.3 Multiple Graph Lines in a Single Panel

The attribute groups in high-level lattice functions can be used when there is a

grouping in the data that is present in each level of the conditioning variable.

Figure 8.12 shows all time series of a species in a single panel. The following

code was used to generate the graph.

> Species <- rep(c("Stilt", "Stilt", "Stilt",
"Coot", "Coot", "Coot",
"Moorhen", "Moorhen"), each = 48)

> xyplot(Birds � Time | Species,
ylab = "Bird abundance",
layout = c(2, 2), type = "l", col = 1,
scales = list(x = list(relation = "same"),

y = list(relation = "free")),
groups = ID, lwd = c(1, 2, 3))

The first command defines a vector Species identifying which observations

are from which species. The xyplot with the groups option then draws the

time series of each species in a single panel. The option lwd was used to draw

lines of different thickness to represent the three islands.

Time

B
ird

 a
bu

nd
an

ce

Stilt_Oahu Stilt_Kauai_Niihau Stilt_Maui

Coot_Oahu Coot_Kauai_Niihau Coot_Maui

Moorhen_Oahu

19601970198019902000 19601970198019902000

19601970198019902000

20
0

40
0

60
0

80
0

10
0

20
0

30
0

40
0

20
0

30
0

40
0

50
0

0
20

0
60

0
10

00

0
50

0
10

00
15

00
20

00

10
0

20
0

30
0

40
0

50
0

0
50

10
0

20
0

0
10

0
20

0
30

0

Moorhen_Kauai

Fig. 8.11 Time series of abundance of three bird species on three islands of Hawaii. Each
panel has an appropriate abundance value range

8.8 Frequently Asked Questions 189

Do Exercise 7 in Section 8.11 on creating multiple lines in an
xyplot function using the temperature data.

8.8.4 Plotting from Within a Loop*

If you did not read Chapter 6, you may want to skip this section. Recall from
Section 8.2, that the salinity dataset consists of time series at stations, and that
the stations are located in areas along the Dutch coast. In Section 8.6.2, we
created a dotplot of the data from the area OS (Figure 8.6). Suppose we want to
make the same graph for each of the 12 areas. One option is to enter the code
from Section 8.6.2 12 times and each time to change the subset option.
However, in Chapter 6, we demonstrated executing similar plotting commands
automatically within a loop. The only difference is that we need to replace the
plot command by a dotplot command:

> setwd("C:/RBook")
> Env <- read.table(file ="RIKZENV.txt", header = TRUE)
> library(lattice)
> AllAreas <- levels(unique(Env$Area))
> for (i in AllAreas){

Time

B
ird

 a
bu

nd
an

ce
0

50
0

10
00

15
00

20
00

1960 1970 1980 1990 2000

Coot

0
10

0
20

0
30

0

Moorhen

20
0

40
0

60
0

80
0

Stilt

Fig. 8.12 Abundance of three species of Hawaiian birds over time. Data on each species are
plotted in a single panel

190 8 An Introduction to the Lattice Package

Env.i <- Env[Env$Area == i,]
win.graph()
dotplot(factor(Month)�SAL | Station, data = Env.i)
}

The first three lines load the data and the lattice package. The variable
AllAreas contains the names of the 12 areas. The loop iteratively extracts
the data of an area and draws a dotplot of all stations in this area. The only
problem is that this code will produce 12 empty graph windows.

When you execute a high-level lattice function, a graph is created on your
screen. This appears similar to using, for example, the traditional plot com-
mand. The lattice command differs, however, because this command returns an
object of class ‘‘trellis,’’ and, in order to see a plot, the print function is invoked.
Sometimes, when issuing a command to draw a lattice plot, nothing happens, not
even an errormessage. Thismost often happens when creating a lattice plot inside
a loop or function, or from a source command. To get the graphs, the print
command must be embedded in the loop:

print(dotplot(factor(Month)�SAL | Station,
data = Env.i))

Adding the print command to the code and rerunning it will produce 12
windows with graphs.

8.8.5 Updating a Plot

Because drawing lattice plots is time consuming, especially when you are new to
lattice, the update function is useful. Many attributes of a lattice object can be
changed with update, thus your graph must be stored in an object first. An
additional advantage is that if you experiment by using the update command,
your original graph is not changed, so

> MyPlot <- xyplot(SAL � MyTime | Station,
type = "l", data = Env)

> print(MyPlot)
> update(MyPlot, layout = c(10, 3))

will print the plot in a new layout. The update command will automatically
generate a plot because it is not assigned to an object. The original object
MyPlot is unchanged.

8.9 Where to Go from Here?

After completing the exercises you will have the flavour of lattice graphs and
will undoubtedly want to use them in research, publications, and presenta-
tions. For further information consult Sarkar (2008) or Murrell (2006). Other

8.9 Where to Go from Here? 191

sources are the website that accompanies Sarkar (2008) (http://lmdvr.r-forge.
r-project.org) or the R-help mailing list.

8.10 Which R Functions Did We Learn?

Table 8.2 contains the R functions introduced in this chapter.

8.11 Exercises

Exercise 1. Using the demo(lattice) function.

Load the lattice package and investigate some of the possibilities by typing in
demo(lattice). Type in ?xyplot and copy and paste some of the examples.

Exercise 2. Using the xyplot with temperature data.

Create a multipanel scatterplot in which temperature is plotted versus time
for each station. What is immediately obvious? Do the same for each area.
What goes wrong and how can you solve this? Add a smoother and a grid to
each panel.

Exercise 3. Using the bwplot with temperature data.

Create a boxplot in which temperature is plotted versus month for each area.
Compare with the boxplot for the salinity data and comment on the differences
in the patterns.

Exercise 4. Using the dotplot function with salinity data.

Use Cleveland dotplots to discover if there are more outliers in the salinity
data, making a lattice plot with all stations as panels. Compare with Fig. 8.3.
What can be noted on the scale of the y-axis? Look up the argument relation
in the help page of xyplot and use it.

Exercise 5. Using the density plot with salinity data.

Change Fig. 8.4 to a density plot. Is it an improvement? Add the following
argument: plot.points = "rug". To compare density distributions you
might prefer to have all the lines in a single graph. This is accomplished with the

Table 8.2 R functions introduced in this chapter

Function Purpose Example

xyplot Draws a scatterplot xyplot (y � x | g, data = data)
histogram Histogram histogram(� x | g, data = data)
bwplot Comparative box-and-whisker

plots
bwplot(y � x | g, data = data)

dotplot Cleveland dotplot dotplot(y � x | g, data = data)
cloud Three-dimensional scatterplot cloud(z � x * y | g, data =

data)

192 8 An Introduction to the Lattice Package

groups argument. Remove the conditioning argument and add groups =
Station (see also Section 8.8). Add a legend to specify the lines representing
each station. This requires advanced programming (though there are simple
solutions), and we refer you to the code on our website for the solution.

Exercise 6. Using the xyplot function with temperature data.

Look at the help pages of panel.linejoin. Create a plot similar to Fig.
8.2, but with temperature on the y-axis. This is the same as in Exercise 3, but
now use panel.linejoin to connect the medians, not the means. Take care
of the NAs in the data, otherwise nothing will happen.

Exercise 7. Using the xyplot function with salinity data.

Create a lattice scatterplot using salinity as the dependent variable versus
time for each area and include the groups argument to draw separate lines for
each station.

Exercise 8. Using the xyplot function with temperature data.

In Exercise 2 you created a lattice scatterplot for each area using temperature
as the dependent variable versus time. Make a similar graph for the area ‘‘KZ’’,
but plot small dots and add a smoothing line with 1/10 span width. Create strips
on either side of the panels, with the text ‘‘Area 1’’, ‘‘Area 2’’, and so on. Add an
x-label, a y-label, and a title.

Exercise 9. Using the xyplot function with salinity data.

Create a multipanel scatterplot of the salinity data versus time conditional on
area with different lines (no points) for the different stations within each area.
Make sure the panel layout is in two columns. Use the same x-axis on each
panel, but different scales for the y-axes. Limit the number of tick marks and
labels on the y-axes to three or four and on the x-axes to four, with the tick
marks between labels. Remove the tick marks (and labels) from the top and
make sure they are only present on the bottom of the graph. Decrease the size of
the text in the strip and the height of the strip. Add a grid (properly aligned with
the tick marks), and also x- and y-labels. Change the order of the panels to
alphabetic from top left to bottom right.

Exercise 10. Using the xyplot function with the ISIT data.

Create a multipanel scatterplot of the ISIST data (see Chapter 1). Plot the
sources versus depth for each station. Also make a multipanel graph in which
data from all stations sampled in the same season are grouped (see also
Exercise 4 in Section 3.7). Each panel (representing a season) should have
multiple lines.

8.11 Exercises 193

	An Introduction to the Lattice Package
	8.1 High-Level Lattice Functions
	8.2 Multipanel Scatterplots: xyplot
	8.3 Multipanel Boxplots: bwplot
	8.4 Multipanel Cleveland Dotplots: dotplot
	8.5 Multipanel Histograms: histogram
	8.6 Panel Functions
	8.6.1 First Panel Function Example
	8.6.2 Second Panel Function Example
	8.6.3 Third Panel Function Example*

	8.7 3-D Scatterplots and Surface and Contour Plots
	8.8 Frequently Asked Questions
	8.8.1 How to Change the Panel Order?
	8.8.2 How to Change Axes Limits and Tick Marks?
	8.8.3 Multiple Graph Lines in a Single Panel
	8.8.4 Plotting from Within a Loop*
	8.8.5 Updating a Plot

	8.9 Where to Go from Here?
	8.10 Which R Functions Did We Learn?
	8.11 Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

