
Chapter 7

Graphing Tools

Chapter 5, the plot function was introduced. We demonstrated elementary
scatterplots, modifying plotting characters, and adding x- and y-labels and a

main title. In this chapter, we introduce more graphing tools. Not all of them
are among our favourites. For example, we have never used pie charts or bar
charts. However, these graphs seem to be on the shortlist of so many scientists

that we find it necessary to include them in this book. They are discussed in
Sections 7.1 and 7.2. Tools to detect outliers—the boxplot and Cleveland

dotplot—are presented in Sections 7.3 and 7.4, respectively. We also demon-
strate graphs illustrating the mean with lines added to represent the standard

error. Scatterplots are further discussed in Section 7.5. Multipanel scatterplots
are discussed in Sections 7.6 and 7.7, and advanced tools to display multiple
graphs in a single window are presented in Section 7.8.

7.1 The Pie Chart

7.1.1 Pie Chart Showing Avian Influenza Data

We demonstrate the pie chart using the avian influenza dataset from Exercise 1

in Section 3.7. Recall that the data represent the numbers of confirmed human
cases of Avian Influenza A/(H5N1) reported to theWorld Health Organization
(WHO). The data for several countries were taken from the WHO website at

www.who.int and are reproduced only for educational purposes. We exported
the data in the Excel file, BidFlu.xls, to a tab-separated ascii file with the name

Birdflucases.txt. The following code imports the data and presents the usual
information.

> setwd("C:/RBook/")
> BFCases <- read.table(file = "Birdflucases.txt",

header = TRUE)
> names(BFCases)
[1] "Year" "Azerbaijan" "Bangladesh"
[4] "Cambodia" "China" "Djibouti"

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_7, � Springer ScienceþBusiness Media, LLC 2009

127

[7] "Egypt" "Indonesia." "Iraq"
[10] "LaoPDR" "Myanmar" "Nigeria"
[13] "Pakistan" "Thailand" "Turkey"
[16] "VietNam"

> str(BFCases)

’data.frame’: 6 obs. of 16 variables:
$Year : int 2003 2004 2005 2006 2007 2008
$Azerbaijan: int 0 0 0 8 0 0
$Bangladesh: int 0 0 0 0 0 1
$Cambodia : int 0 0 4 2 1 0
$China : int 1 0 8 13 5 3
$Djibouti : int 0 0 0 1 0 0
$Egypt : int 0 0 0 18 25 7
$Indonesia.: int 0 0 20 55 42 18
$Iraq : int 0 0 0 3 0 0
$LaoPDR : int 0 0 0 0 2 0
$Myanmar : int 0 0 0 0 1 0
$Nigeria : int 0 0 0 0 1 0
$Pakistan : int 0 0 0 0 3 0
$Thailand : int 0 17 5 3 0 0
$Turkey : int 0 0 0 12 0 0
$VietNam : int 3 29 61 0 8 5

We have annual data from the years 2003–2008. The first variable contains
the years. There are various things we can learn from this dataset. An interesting
question is whether the number of bird flu cases has increased over time.We can
address this question for individual countries or for the total number of cases.
The latter is calculated by

> Cases <- rowSums(BFCases[, 2:16])
> names(Cases) <- BFCases[, 1]
> Cases

2003 2004 2005 2006 2007 2008
4 46 98 115 88 34

Columns 2–16 of BFCases contain the information per country. The row-
Sums function calculates totals per year and the names function adds the labels
2003–2008 to the variable Cases. (Note that the 34 cases in 2008 is misleading,
as this was written halfway through 2008. If this were a proper statistical
analysis, the 2008 data would be dropped.) The function for a pie chart in R
is pie. It has various options, some of which are illustrated in Fig. 7.1. The pie
function requires as input a vector of nonnegative numerical quantities; any-
thing more is optional and deals with labels, colours, and the like.

128 7 Graphing Tools

Figure 7.1 was made with the following R code.

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
> pie(Cases, main = "Ordinary pie chart") #A
> pie(Cases, col = gray(seq(0.4, 1.0, length = 6)),

clockwise = TRUE, main = "Grey colours") #B
> pie(Cases, col = rainbow(6), clockwise = TRUE,

main = "Rainbow colours") #C
> library(plotrix)
> pie3D(Cases, labels = names(Cases), explode = 0.1,

main = "3D pie chart", labelcex = 0.6) #D

The par function is discussed in the next section. The variable Cases is of
length 6 and contains totals per year. The command pie (Cases) creates the

pie chart in Fig. 7.1A. Note that the direction of the slices is anticlockwise,
which may be awkward, because our variable is time related. We reversed this
in the second pie chart (Fig. 7.1B) with the option clockwise = TRUE. We

also changed the colours, but, because this book is printed without colour, try
this yourself: type in the code and see the colours of the pie charts in panels
A–C. Because most of your work is likely to end up in a greyscale paper or

2003

2004

2005

2006

2007

2008

Ordinary pie chart

2003
2004

2005

2006

2007

2008

Grey colours

2003
2004

2005

2006

2007

2008

Rainbow colours

3D pie chart

2003
2004

2005

2006

2007

2008

A

C

D

B

Fig. 7.1 A: Standard pie chart. B: Pie chart with clockwise direction of the slices. C: Pie chart
with rainbow colours (which have been converted to greyscale during the printing process).
D: Three-dimensional pie chart

7.1 The Pie Chart 129

report, we recommend using greyscale from the beginning. The only exception
is for a PowerPoint presentation, where it is useful to present coloured pie
charts. Note that the term ‘‘useful’’ refers to ‘‘coloured,’’ rather than to pie
charts per se. The main problem with the pie chart is illustrated in Fig. 7.1:
Although 2005 and 2006 have the largest slices, it is difficult to determine
whether you should stay at home and close the windows and doors to survive
the next pandemic, or whether ‘‘only’’ a handful of people were unfortunate
enough to contract the disease. The pie chart does not give information on
sample size.

Finally, Fig. 7.1D shows a three-dimensional pie chart. Although it
now looks more like a real pie, it is, if anything, even less clear in its
presentation than the other three graphs. To make this graph, you need
to install the package plotrix. The function pie3D has many options,
and we suggest that you consult its help file to improve the readability of
labels.

7.1.2 The par Function

The par function has an extensive list of graph parameters (see ?par) that can
be changed. Some options are helpful; others you may never use.

The mfrow =c (2, 2) creates a graphic window with four panels. Chan-
ging the c (2, 2) to c (1, 4) or c (4, 1) produces a row (or column) of
four pie charts. If you have more than four graphs, for instance 12, use mfrow
=c(3, 4), although now things can become crowded.

The mar option specifies the amount of white space around each graph (each
pie chart in this case). The white space is defined by the number of lines of
margin at the four sides; bottom, left, top, and right. The default values are,
respectively, c (5, 4, 4, 2)+0.1. Increasing the values gives more white
space. Using trial and error, we chose c (3, 3, 2, 1).

A problem arises with the par function if you execute the code for the four
pie charts above and, subsequently, make another graph. R is still in the 2 6 2
mode, and will overwrite Figure 7.1A, leaving the other three graphs as they are.
The next graph will overwrite panel B, and so on. There are two ways to avoid
this. The first option is simply to close the four-panel graph in R before making
a new one. This is a single mouse click. The alternative is a bit more program-
ming intensive:

> op <- par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
> pie(Cases, main = "Ordinary pie chart")
> pie(Cases, col = gray(seq(0.4, 1.0, length = 6)),

clockwise = TRUE, main = "Grey colours")
> pie(Cases, col = rainbow(6), clockwise = TRUE,

main = "Rainbow colours")

130 7 Graphing Tools

> pie3D(Cases, labels = names(Cases), explode = 0.1,
main = "3D pie chart", labelcex = 0.6)

> par(op)

The graph parameter settings are stored in the variable op on the first line.
The graphs are made as before, and the last line of code converts to the default
settings. Any new graph created after the par (op) command will be plotted as
if the par function had not been used. This is useful if you need to create many
graphs in sequence. It is neat programming, but takes more typing. It is often
tempting to be lazy and go for the first approach. However, for good program-
ming practice, we recommend making the extra effort. You will also see this
style of programming in the help files.

Do Exercise 1 in Section 7.10 using the pie function.

7.2 The Bar Chart and Strip Chart

We give two examples of the bar chart, another type of graph that is not part of
our toolbox. In the first example, we continue with the avian influenza data and
present a bar chart showing the total number of bird flu cases and deaths per
year. In the second example, a marine benthic dataset is used, with mean values
per beach plotted as bars. In the last section, we show a strip chart to visualise
similar information.

7.2.1 The Bar Chart Using the Avian Influenza Data

In the previous section, an avian influenza dataset was used to create pie charts
showing the total number of cases per year. In addition to bird flu cases, the
number of deaths is also available and can be found in the tab-separated ascii
file, Birdfludeaths.txt. The data are loaded with the commands:

> BFDeaths <- read.table(file = "Birdfludeaths.txt",
header = TRUE)

> Deaths <- rowSums(BFDeaths[, 2:16])
> names(Deaths) <- BFDeaths[, 1]
> Deaths

2003 2004 2005 2006 2007 2008
4 32 43 79 59 26

7.2 The Bar Chart and Strip Chart 131

The data are structured in the same manner as the bird flu cases. We can

visualise the change in the number of cases over time, and then compare number

of cases to deaths.
The bar chart in Fig. 7.2A shows the change in the number of cases

over time using the data from the variable Cases (see Section 7.1 for

code to calculate Cases). Recall that Cases has six values with the

labels 2003–2008. Each year is presented as a vertical bar. This graph is

more useful than the pie chart, as we can read the absolute values from

the y-axis. However, a great deal of ink and space is consumed by only

six values.

The first two lines of the code below were used to make the bar chart in panel

A. The remaining code is for panels B–D:

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
> barplot(Cases , main = "Bird flu cases") #A
> Counts <- cbind(Cases, Deaths)
> barplot(Counts) #B
> barplot(t(Counts), col = gray(c(0.5, 1))) #C
> barplot(t(Counts), beside = TRUE) #D

2003 2004 2005 2006 2007 2008

Bird flu cases

0
20

40
60

80
10

0

Cases Deaths

0
50

15
0

25
0

35
0

2003 2004 2005 2006 2007 2008

0
50

10
0

15
0

2003 2004 2005 2006 2007 2008

0
20

40
60

80
10

0C

A B

D

Fig. 7.2 A: Standard bar chart showing the annual number of bird flu cases. B: Stacked bar
chart showing the accumulated totals per year for cases and deaths (note that values for 2003
can hardly be seen). C: Stacked cases (grey) and deaths (white) per year. D: Number of cases
and deaths per year represented by adjoining bars

132 7 Graphing Tools

In panels B–D, we used the combined data for cases and deaths; these are

called Counts and are of dimension 6 6 2:

> Counts
Cases Deaths

2003 4 4
2004 46 32
2005 98 43
2006 115 79
2007 88 59
2008 34 26

In panel B the bars represent data for each year. The graph gives little usable

information. Also, years with small numbers (e.g., 2003) are barely visible. To

produce panel C, we took the transposed values of Counts using the function

t, making the input for the barplot function a matrix of dimension 2 6 6.

> t(Counts)
2003 2004 2005 2006 2007 2008

Cases 4 46 98 115 88 34
Deaths 4 32 43 79 59 26

Although you see many such graphs in the literature, they can be misleading.

If you compare the white boxes with one another, your eyes tend to compare the

values along the y-axis, but these are affected by the length of the grey boxes. If

your aim is to show that in each year there are more cases than deaths, this

graph may be sufficient (comparing compositions). Among the bar charts,

panel D is probably the best. It compares cases and deaths within each year,

and, because there are only two classes per year, it is also possible to compare

cases and deaths among years.

7.2.2 A Bar Chart ShowingMean Values with Standard Deviations

In Chapter 27 of Zuur et al. (2007), core samples were taken at 45 stations on

nine beaches along the Dutch coastline. The marine benthic species were

determined in each sample with over 75 identified. In Chapter 6, we developed

a function to calculate species richness, the number of different species. The file

RIKZ2.txt contains the richness values for the 45 stations and also a column

identifying the beach.
The following R code imports the data and calculates the mean richness and

standard deviation per beach. The tapply function was discussed in Chapter 41.

1 Note that we could have omitted the text INDEX = and FUN = .

7.2 The Bar Chart and Strip Chart 133

> setwd("C:/RBook/")
> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)
> Bent.M <- tapply(Benthic$Richness,

INDEX = Benthic$Beach, FUN = mean)
> Bent.sd <- tapply(Benthic$Richness,

INDEX = Benthic$Beach, FUN = sd)
> MSD <- cbind(Bent.M, Bent.sd)

The variable Bent.M contains the mean richness values, and Bent.sd the

standard deviation, for each of the nine beaches.We combined them in a matrix

MSD with the cbind command. The values are as follows:

> MSD

Bent.M Bent.sd
1 11.0 1.224745
2 12.2 5.357238
3 3.4 1.816590
4 2.4 1.341641
5 7.4 8.532292
6 4.0 1.870829
7 2.2 1.303840
8 4.0 2.645751
9 4.6 4.393177

To make a graph in which the mean values are plotted as a bar and the

standard deviations as vertical lines extending above the bars (Fig. 7.3A) use the

following procedure. For the graph showing mean values, enter

1 2 3 4 5 6 7 8 9
Beach

R
ic

hn
es

s
0

5
10

15
20

1 2 3 4 5 6 7 8 9

0
5

10
15

20

Beach

R
ic

hn
es

s

A B

Fig. 7.3 A: Bar chart showing the benthic data.Mean values are represented by the barswith a
vertical line showing standard deviations. The colours were changed to greyscale during the
printing process.B: Strip chart for the raw data. Themean value per beach is plotted as a filled
dot, and the lines represent the mean +/– the standard error

134 7 Graphing Tools

> barplot(Bent.M)

Add labels and perhaps some colour for interest:

> barplot(Bent.M, xlab = "Beach", ylim = c(0, 20),
ylab = "Richness", col = rainbow(9))

The vertical lines indicating standard deviations are added using the function

arrows to draw an arrow between two points with coordinates (x1, y1) and (x2,

y2). TellingR to draw an arrowbetween the points (x, y1) and (x, y2), will produce a

vertical arrow, as both points have the same x-value. The y1-value is themean, and

the y2-value is the mean plus the standard deviation. The x is the coordinate of the

midpoint of a bar. The following code obtains these values and creates Fig. 7.3A.

> bp <- barplot(Bent.M, xlab = "Beach", ylim = c(0,20),
ylab = "Richness", col = rainbow(9))

> arrows(bp, Bent.M, bp, Bent.M + Bent.sd, lwd = 1.5,
angle = 90, length = 0.1)

> box()

It is the bp<–barplot (Bent.M, ...) that helps us out. The best way to

understand what it does is by typing:

> bp

[,1]
[1,] 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3
[5,] 5.5
[6,] 6.7
[7,] 7.9
[8,] 9.1
[9,] 10.3

They are the midpoints along the x-axis of each bar, which are used as input

for the arrows function. The angle = 90 and length = 0. 1 options

change the head of the arrow into a perpendicular line. The lwd stands for line

width with 1 as the default value. The box function draws a box around the

graph. Run the code without it and see what happens.

7.2.3 The Strip Chart for the Benthic Data

In the previous section, a marine benthic dataset was used, and the mean

species richness values per beach were presented as bars with a line

7.2 The Bar Chart and Strip Chart 135

representing standard deviation. Section 7.4 in Zar (1999) contains a dis-

cussion of when to present the standard deviation, standard error, or twice

the standard error (assuming a large sample). It is relatively easy to produce

a graph with the raw data, mean values, and either the standard deviation

or standard error around the mean. An example is given in Fig. 7.3B.

Instead of using the plot function, we used the stripchart function.

The open dots show the raw data. We have added random jittering (varia-

tion) to distinguish observations with the same value, which would other-

wise coincide. The filled dots are the mean values per beach, and were

calculated in the previous section. We illustrate the standard errors, which

are calculated by dividing the standard deviation by the square root of the

sample size (we have five observations per beach). In R, this is done as

follows.

> Benth.le <- tapply(Benthic$Richness,
INDEX = Benthic$Beach, FUN = length)

> Bent.se <- Bent.sd / sqrt(Benth.le)

The variable Bent.se now contains the standard errors. Adding the

lines for standard error to the graph is now a matter of using the arrow
function; an arrow is drawn from the mean to the mean plus the standard

error, and also from the mean to the mean minus the standard error. The

code is below.

> stripchart(Benthic$Richness ~ Benthic$Beach,
vert = TRUE, pch = 1, method = "jitter",
jit = 0.05, xlab = "Beach", ylab = "Richness")

> points(1:9, Bent.M, pch = 16, cex = 1.5)
> arrows(1:9, Bent.M,

1:9, Bent.M + Bent.se, lwd = 1.5,
angle = 90, length = 0.1)

> arrows(1:9, Bent.M,
1:9, Bent.M - Bent.se, lwd = 1.5,
angle = 90, length = 0.1)

The options in the stripchart function are self-explanatory. Change them

to see what happens. The points function adds the dots for the mean values.

Instead of the stripchart function, you can also use the plot function, but

it does not have a method = "jitter" option. Instead you can use jitter
(Benthic$Richness). Similar R code is given in Section 6.1.3 in Dalgaard

(2002).

Do Exercise 2 in Section 7.10. This is an exercise in the barchart
and stripchart functions using vegetation data.

136 7 Graphing Tools

7.3 Boxplot

7.3.1 Boxplots Showing the Owl Data

The boxplot should most often be your tool of choice, especially when working
with a continuous numerical response (dependent) variable and categorical
explanatory (independent) variables. Its purpose is threefold: detection of out-
liers, and displaying heterogeneity of distribution and effects of explanatory
variables. Proper use of this graphing tool, along with the Cleveland dotplot
(which is described fully in Section 7.4), can provide a head start on analysis of
data.

In Chapter 6 we used a dataset on owl research. Roulin and Bersier (2007)
looked at how nestlings respond to the presence of the father and of the mother.
Using microphones inside and a video outside the nests, they sampled 27 nests,
and studied vocal begging behaviour when the parents brought prey. Sampling
took place between 21.30 hours and 05.30 hours on two nights. Half the nests
were food deprived and the other half food satiated (this was reversed on the
second night). The variable ArrivalTime shows the time when a parent
arrived at the perch with prey. ‘‘Nestling negotiation’’ indicates the average
number of calls per nest.

One of the main questions posed is whether there is a feeding protocol effect
and a sex of parent effect. The analysis requires mixed effects modelling tech-
niques and is fully described in Zuur et al. (2009). Before doing any complicated
statistics, it is helpful to create boxplots. A boxplot for the nestling negotiation
data is easily made using the boxplot function seen in Chapter 1. In Chapter 6,
we showed the output of the names and str functions for the owl data, and do
not repeat it here.

> setwd("C:/RBook/")
> Owls <- read.table(file = "Owls.txt", header = TRUE)
> boxplot(Owls$NegPerChick)

The resulting graph is presented in Fig. 7.4. A short description of the
boxplot construction is given in the figure labelling. There are five potential
outliers, indicating that further investigation is required.

Figure 7.5 illustrates possible effects of sex of the parent (panel A), food
treatment (panel B), and the interaction between sex of the parent and
food treatment (panels C and D). Because the variable names are long,
they are not completely displayed in panel C. We reproduced the boxplots
from panel C in panel D and added labels using the names option.
Results indicate that there is a possible food treatment effect. The inter-
action is not clear, which was confirmed by formal statistical analysis. The
R code to make Fig. 7.4 is given below. Panels C and D were produced
with the SexParent *FoodTreatment construction. The code is self-
explanatory.

7.3 Boxplot 137

Female Male Deprived Satiated

0
2

4
6

8

0
2

4
6

8
0

2
4

6
8

Female.Deprived Female.Satiated F/Dep M/Dep F/Sat M/Dep

0
2

4
6

8

BA

DC

Fig. 7.5 A: Boxplot of owl nestling negotiation conditional on sex of the parent.B: Boxplot of
owl nestling negotiation conditional on food treatment. C: Boxplot of owl nestling negotia-
tion conditional on sex of the parent and food treatment. D: Same as panel C, with added
labels

0
2

4
6

8

Negotiation per chick

Fig. 7.4 Boxplot of owl nestling negotiation. The thick horizontal line is the median; the box is
defined by the 25th and 75th percentiles (lower and upper quartile). The difference between the
two is called the spread. The dotted line has a length of 1.5 times the spread. (The length of the
line pointing up is shorter if the values of the points are smaller than the 75th percentile+ 1.56
spread, and similar for the line pointing downwards. This explains why there is no line at the
bottom of the box.) All points outside this range are potential outliers. See Chapter 4 in Zuur
et al. (2007) for a discussion of determining if such points are indeed outliers. Note that in this
case the 25th percentile is also the smallest value (there are many zero values)

138 7 Graphing Tools

> par(mfrow = c(2,2), mar = c(3, 3, 2, 1))
> boxplot(NegPerChick ~ SexParent, data = Owls)
> boxplot(NegPerChick ~ FoodTreatment, data = Owls)
> boxplot(NegPerChick ~ SexParent * FoodTreatment,

data = Owls)
> boxplot(NegPerChick ~ SexParent * FoodTreatment,

names = c("F/Dep", "M/Dep", "F/Sat", "M/Sat"),
data = Owls)

Sometimes getting all the labels onto a boxplot calls for more creativity. For

example, Fig. 7.6 shows a boxplot of nestling negotiation conditional on nest.

There are 27 nests, all with long names. If we had entered

> boxplot(NegPerChick ~ Nest, data = Owls)

only a few of the labels would be shown. The solution was to create the boxplot

without a horizontal axis line and to put the labels in a small font, at an angle,

under the appropriate boxplot. This sounds complicated, but requires only

three lines of R code.

> par(mar = c(2, 2, 3, 3))
> boxplot(NegPerChick ~ Nest, data = Owls,

axes = FALSE, ylim = c (-3, 8.5))
> axis(2, at = c(0, 2, 4, 6, 8))
> text(x = 1:27, y = -2, labels = levels(Owls$Nest),

cex = 0.75, srt = 65)

Because we used the option axes =FALSE, the boxplot function drew

the boxplot without axes lines. The ylim specifies the lower and upper limits of

0
2

4
6

8
A

ut
av

au
xT

V
B

oc
he

t
C

ha
m

pm
ar

tin
C

hE
sa

rd
C

he
vr

ou
x

C
or

ce
lle

s
Fa

vr
es

E
tra

bl
oz

Fo
re

l
Fr

an
ex

G
D

LV
G

le
tte

re
ns

H
en

ni
ez

Je
us

s
Le

sP
la

nc
he

s
Lu

ce
ns

Lu
lly

M
ar

na
nd

M
ou

te
t

M
ur

is
t

O
le

ye
s

P
ay

er
ne

R
ue

ye
s

S
ei

ry
S

E
va

z
S

tA
ub

in
Tr

ey
Y

vo
nn

an
d

Fig. 7.6 Boxplot of owl nestling negotiation conditional on the 27 nests. The shape of the boxplot
suggests that there may be a nest effect, suggesting further analysis by mixed effects models

7.3 Boxplot 139

the vertical axis. Instead of using limits from 0 to 8.5, we used –3 to 8.5. This
allowed us to put the labels in the lower part of the graph (Fig. 7.6).

The axis function draws an axis. Because we entered 2 as the first argument,
the vertical axis on the left is drawn, and the at argument specifies where the
tick marks should be. The text command places all the labels at the appro-
priate coordinates. The cex argument specifies the font size (1 is default) and
srt defines the angle. You will need to experiment with these values and choose
the most appropriate settings.

7.3.2 Boxplots Showing the Benthic Data

Recall that in the marine benthic dataset, species richness was measured at nine
beaches. We now make a boxplot for each beach (Fig. 7.7). Note that there are
only five observations per beach. Because this is a low number for boxplots, we
want to add information on sample size per beach to the graph. One option is to
specify the varwidth = TRUE option in the boxplot function to make the
width of each box proportional to the number of observations on the beach.
However, we instead choose to add the number of samples per beach inside each
box. First, we need to obtain the sample size per beach using the followingR code.

> setwd("C:/RBook/")
> Benthic <- read.table(file = "RIKZ2.txt",

header= TRUE)
> Bentic.n <- tapply(Benthic$Richness, Benthic$Beach,

FUN = length)
> Bentic.n

1 2 3 4 5 6 7 8 9
5 5 5 5 5 5 5 5 5

1 2 3 4 5 6 7 8 9

0
5

10
15

20

Beach

R
ic

hn
es

s

5
5

5
5

5 5

5
5 5

Fig. 7.7 Conditional boxplot using species richness as the dependent variable and beach as the
conditioning variable. Number of observations per beach is shown inside each box

140 7 Graphing Tools

The tapply function calculates the number of observations per beach, 5,

and stores them in the variable Benthic.n. The boxplot is created with the
command

> boxplot(Richness ~ Beach, data = Benthic,
col = "grey", xlab = "Beach", ylab = "Richness")

There is no new code here. The problem is placing the numbers of the variable
Benthic.n inside the boxplot, preferably in the centre (which is not necessarily
the median). Recall that the box is specified by the upper and lower quartiles.
Adding half the value of the spread (upper hingeminus lower hinge) to the value of

the lower hinge will put us vertically centred in the boxplot. Fortunately, all these
values are calculated by the boxplot function and can be stored in a list by using

> BP.info <- boxplot(Richness ~ Beach, data = Benthic,
col = "grey", xlab = "Beach",
ylab = "Richness")

The list BP.info contains several variables, among them BP.info
$stats. The boxplot help file will tell you that the second row of $stats
contains the values of the lower hinges (for all beaches), and the fourth row
shows the upper hinges. Hence, the midpoints (along the vertical axes) for all

beaches are given by:

> BP.midp <- BP.info$stats[2,] +
(BP.info$stats[4,] - BP.info$stats[2,]) / 2

It is now easy to place the numbers in Bentic.n inside the boxplot:

> text(1:9, BP.midp, Bentic.n, col = "white", font = 2)

We can put any text into the boxplot with this construction. For longer
strings, you may want to rotate the text 90 degrees.

The boxplot function is very flexible and has a large number of attributes that
can be changed.Have a look at the examples in the help files ofboxplot andbxp.

Do Exercises 3 and 4 in Section 7.10. These are exercises in the
boxplot function using the vegetation data and a parasite dataset.

7.4 Cleveland Dotplots

Dotplots, also known as Cleveland dotplots, are excellent tools for outlier
detection. See Cleveland (1993), Jacoby (2006), or Zuur et al. (2007, 2009) for
examples.

7.4 Cleveland Dotplots 141

Figure 7.8 contains two dotplots for the deer dataset (Vicente et al., 2006),

which was used in Section 4.4. Recall that the data were from multiple farms,

months, years, and sexes. One of the aims of the study was to assess the relation-

ship between the number ofE. cervi parasites in deer and the length of the animal.

Before doing any analysis, we should inspect each continuous variable in the

dataset for outliers. This can be done with a boxplot or with a Cleveland dotplot.

Figure 7.8A shows a Cleveland dotplot for the length of the animals. The

majority of the animals are around 150 centimetres in length, but there are

three animals that are considerably smaller (around 80 centimetres). As a con-

sequence, applying a generalised additive model using length as a smoother may

result in larger confidence bands at the lower end of the length gradient.
You can extend a Cleveland dotplot by grouping the observations based on a

categorical variable. This was done in Fig. 7.8B; the length values are now

grouped by sex. Note that one sex class is clearly larger. The goal of the study

was tomodel the number of parasites (E. cervi) as a function of length, sex, year,

and farm, in order to determine which of the explanatory (independent) vari-

ables is the crucial factor. However, it is difficult to say which explanatory

variable is important if there are correlations among the variables. Such a

situation is called collinearity. In this case, visualizing length versus sex is useful

and can be done with a boxplot in which length is plotted conditional on sex, or

with the Cleveland dotplot (Fig. 7.8B).
The graphs were created using the R function, dotchart. Function

dotchart2 in the package Hmisc (which is not part of the base installation)

can produce more sophisticated presentations. We limit our discussion to

dotchart. The data are imported with the following two lines of code.

80 100 140 180 220
Length (cm) Length (cm)

O
bs

er
va

tio
n

nu
m

be
r

1

2

80 100 140 180 220

O
bs

er
va

tio
n

nu
m

be
r

gr
ou

pe
d

by
 s

exA B

Fig. 7.8 A: Cleveland dotplot showing deer length. The x-axis shows the length value and the
y-axis is the observation number (imported from the ascii file). The first observation is at the
bottom of the y-axis. B: As panel A, but with observations grouped according to sex. There
may be correlation between length and sex.

142 7 Graphing Tools

> setwd("C:/RBook/")
> Deer <- read.table("Deer.txt", header = TRUE)

We have seen the output of the names and str commands in Section 4.4,
and this information is not repeated. The Cleveland dotplot in Fig. 7.8A is
produced with the following R code.

> dotchart(Deer$LCT, xlab = "Length (cm)",
ylab = "Observation number")

The dotchart function has various options. The groups option allows
grouping the data by categorical variable:

> dotchart(Deer$LCT, groups = factor(Deer$Sex))

Error in plot.window(xlim, ylim, log, asp, ...) :
need finite ’ylim’ values

The variable Sex has missing values (type Deer $Sex in the R console to
view them), and, as a result, the dotchart function stops and produces an
error message. The missing values can easily be removed with the following
code.

> Isna <- is.na(Deer$Sex)
> dotchart(Deer$LCT[!Isna],

groups = factor(Deer$Sex[!Isna]),
xlab = "Length (cm)",
ylab = "Observation number grouped by sex")

The is.na function produces a vector of the same length as Sex, with the
values TRUE and FALSE. The ! symbol reverses them, and only the values for
which Sex is not a missing value are plotted. Note that we used similar code in
Chapter 3. If you want to have the two Cleveland dotplots in one graph, put the
par (mfrow = c (1, 2)) in front of the first dotchart.

7.4.1 Adding the Mean to a Cleveland Dotplot

Cleveland dotplots are a good alternative to boxplots when working with small
sample sizes. Figure 7.9A shows a Cleveland dotplot of the benthic data used
earlier in this chapter. Recall that there are five observations per beach. The
right graph shows the same information with the mean value for each beach
added. This graph clearly shows at least one ‘‘suspicious’’ observation. The code
is basic; see below. The first three commands import the data, with Beach
defined as a factor. A graph window with two panels is created with the par
function. The first dotchart command follows that of the deer data. To the
second dotchart command, we have added the gdata and gpch options.

7.4 Cleveland Dotplots 143

The g stands for group, and the gdata attribute is used to overlay a summary

statistic such as the median, or, as we do here with the tapply function, the

mean. Finally, the legend function is used to add a legend. We discuss the use

of the legend function in more detail later in this chapter.

> setwd("C:/RBook/")
> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)
> Benthic$fBeach <- factor(Benthic$Beach)
> par(mfrow = c(1, 2))
> dotchart(Benthic$Richness, groups = Benthic$fBeach,

xlab = "Richness", ylab = "Beach")
> Bent.M<-tapply(Benthic$Richness, Benthic$Beach,

FUN = mean)
> dotchart(Benthic$Richness, groups = Benthic$fBeach,

gdata = Bent.M, gpch = 19, xlab = "Richness",
ylab = "Beach")

> legend("bottomright", c("values", "mean"),
pch = c(1, 19), bg = "white")

Do Exercises 5 and 6 in Section 7.10 creating Cleveland dotplots

for the owl data and for the parasite data.

1

2

3

4

5

6

7

8

9

0 5 10 15 20
Richness

0 5 10 15 20
Richness

B
ea

ch
1

2

3

4

5

6

7

8

9

B
ea

ch

values
mean

Fig. 7.9 Cleveland dotplots for the benthic data.A: The vertical axis shows the sampling sites,
grouped by beach, and the horizontal axis the richness values. B: Same as A, with mean values
per beach added

144 7 Graphing Tools

7.5 Revisiting the plot Function

7.5.1 The Generic plot Function

The most frequently used plotting command is plot, which was introduced in

Chapter 5. It is an intuitive function, recognising what you intend to plot. R is

an object-oriented language: the plot function looks at the object with which it

is presented, establishes the object’s class, and recruits the appropriate plotting

method for that object. To see the methods available for a function (i.e., plot),
enter

> methods(plot)

[1] plot.acf* plot.data.frame* plot.Date*
[4] plot.decomposed.ts* plot.default plot.dendrogram*
[7] plot.density plot.ecdf plot.factor*
[10] plot.formula* plot.hclust* plot.histogram*
[13] plot.HoltWinters* plot.isoreg* plot.lm
[16] plot.medpolish* plot.mlm plot.POSIXct*
[19] plot.POSIXlt* plot.ppr* plot.prcomp*
[22] plot.princomp* plot.profile.nls* plot.spec
[25] plot.spec.coherency plot.spec.phase plot.stepfun
[28] plot.stl* plot.table* plot.ts
[31] plot.tskernel* plot.TukeyHSD

Non-visible functions are asterisked

These are the existing plotting functions, and are only those available in

the default packages. All these functions can be called with the plot
function. For example, if you do a principal component analysis (PCA)

and want to print the results, it is not necessary to use the plot.prin-
comp, as the plot function will recognise that you conducted a PCA, and

will call the appropriate plotting function. Another example is the follow-

ing code.

> setwd("C:/RBook/")
> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)
> Benthic$fBeach <- factor(Benthic$Beach)
> plot(Benthic$Richness ~ Benthic$fBeach)

The first three lines import the benthic dataset used earlier in this chapter

and define the variable Beach as a factor. The plot function sees the

formula Benthic$Richness � Benthic$fBeach, and produces a box-

plot rather than a scatterplot (see the help file of plot.factor). If the

argument in the plot function is a data frame, it will produce a pair plot (see

Section 7.6).

7.5 Revisiting the plot Function 145

7.5.2 More Options for the plot Function

In Chapter 5, we discussed the use of the plot function to plot two continuous
variables against each other and also showed how to change the characters and
colours. But there are many additional options, some of which we present in the
remaining part of this section. We use the benthic data to demonstrate once
again producing a scatterplot of two continuous variables (Fig. 7.10A). The
graph was obtained with the following code.

> plot(y = Benthic$Richness, x = Benthic$NAP,
xlab = "Mean high tide (m)",
ylab = "Species richness", main = "Benthic data")

> M0 <- lm(Richness ~ NAP, data = Benthic)
> abline(M0)

The new addition is the lm and abline functions. Without going into statis-
tical detail, the lm applies linear regression in which species richness is modelled as
a function of NAP, the results are stored in the list M0, and the abline function
superimposes the fitted line. Note that this only works if there is a single explana-
tory variable (otherwise, plotting the results in a two-dimensional graph becomes
difficult), and if the abline function is executed following the plot function.

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0

0
5

10
15

20

Benthic data

Mean high tide (m)

S
pe

ci
es

 r
ic

hn
es

s

–3 –2 –1 0 1 2 3

0
5

10
15

20

Mean high tide (m)

S
pe

ci
es

 r
ic

hn
es

s

Mean high tide

S
pe

ci
es

 r
ic

hn
es

s

Mean high tide

S
pe

ci
es

 r
ic

hn
es

s

0
10

20

Sea Water line Dunes

A

C D

B

Fig. 7.10 A: Scatterplot of species richness versus NAP (mean high tide levels) with a linear
regression line added. B: Same as panel A, with the x- and y-ranges set using the xlim and
ylim functions. C: Same as panel A, but without axes lines. D: Same as panel A, with
modified tick marks along the y-axis and character strings along the x-axis. Note that the
sites are from an intertidal area, hence the negative values of mean high tide

146 7 Graphing Tools

The plot function can easily be extended to add more detail to the graph by

giving it extra arguments. Some of the most frequently used arguments are

given in the table below.

Argument What does it do?

main Adds a title to the graph

xlab, ylab Labels the x- and y- axis

xlim, ylim Sets limits to the axes

log Log=‘‘x’’, log=‘‘y’’, log=‘‘xy’’ creates logarithmic axes

type Type = ‘‘p’’, ‘‘l’’, ‘‘b’’, ‘‘o’’, ‘‘h’’, ‘‘s’’, ‘‘n’’ for plotting points,
lines, points connected by lines, points overlaid by lines, vertical
lines from points to the zero axis, steps, or only the axes

We have previously illustrated the xlab and ylab attributes. The xlim and

ylim specify the ranges along the x- and y-axes. Suppose that you wish to set

the range of the horizontal axis from –3 to 3 metres and the range along the

vertical axis from 0 to 20 species. Use

> plot(y = Benthic$Richness, x = Benthic$NAP,
xlab = "Mean high tide (m)",
ylab = "Species richness",
xlim = c(-3, 3), ylim = c(0,20))

The xlim argument has to be of the form c(x1, x2), with numerical values

for x1 and x2. The same holds for the ylim argument. The results are shown in

Fig. 7.10B.
Panels C and D in Fig. 7.10 show other options. Panel C does not contain

axes lines. The R code is as follows.

> plot(y = Benthic$Richness, x = Benthic$NAP,
type = "n", axes = FALSE,
xlab = "Mean high tide",
ylab = "Species richness")

> points(y = Benthic$Richness, x = Benthic$NAP)

Thetype = n produces a graphwithout points, and, becausewe useaxes =
FALSE, no axes lines are plotted. We begin with a blank window with only the

labels. The points function superimposes the points onto the graph (note that

you must execute the plot function prior to the points function or an error

message will result).
In panel C, we basically told R to prepare a graph window, but not to plot

anything. We can then proceed, in steps, to build the graph shown in Panel D.

The axis function is the starting point in this process. It allows specifying the

position, direction, and size of the tick marks as well as the text labelling them.

7.5 Revisiting the plot Function 147

> plot(y = Benthic$Richness, x = Benthic$NAP,
type = "n", axes = FALSE, xlab = "Mean high tide",
ylab = "Species richness",
xlim = c(-1.75,2), ylim = c(0,20))

> points(y = Benthic$Richness, x = Benthic$NAP)
> axis(2, at = c(0, 10, 20), tcl = 1)
> axis(1, at = c(-1.75, 0,2),

labels = c("Sea", "Water line", "Dunes"))

The first two lines of code are identical to those for panel C. The axis (2, ..
.) command draws the vertical axis line and inserts tick marks of length 1 (the
default value is –0.5) at the values 0, 10, and 20. Setting tcl to 0 eliminates tick
marks. Tick marks pointing outwards are obtained by a negative tcl value; a
positive value gives inward pointing tick marks. The axis (1, ...) command
draws the horizontal axis, and, at the values –1.75, 0, and 2, adds the character
strings Sea, Water line, and Dunes. See the axis help file for further graphing
facilities.

DoExercise 7 in Section 7.10. This is an exercise in theplot andaxis
functions using the owl data.

7.5.3 Adding Extra Points, Text, and Lines

This section addresses features that can be used to increase the visual appeal of
graphs. Possible embellishmentsmight be different types of lines and points, grids,
legends, transformed axes, andmuchmore. Look at the par help file, obtained by
typing ?par, to see many of the features that can be added and altered. We could
write an entire book on the par options, some of which have been addressed in
Chapter 5 and in earlier sections of this chapter. More are discussed in Chapter 8.
However, even novice users will feel the need for some information on the par
function at an early point. Because we do not want this volume to become
phonebook-sized, we discuss some of the par and plotting options in a birds-
eye overview mode, and try to guide you to the appropriate help files.

The functions points, text, and lines are valuable companions when
working in R and were used in some earlier chapters.

The function points adds new values to a plot, such as x-values and (option-
ally) y-values. By default, the function plots points, so, just as with plot, type is
set to "p". However, all the other types can be used: "l" for lines, "o" for
overplotted points and lines, "b" for points and lines, "s" and"S" for steps, and
"h" for vertical lines. Finally, "n" produces a graph-setupwith no data points or
lines (see Section 7.5.2). Symbols can be changed using pch (see Chapter 5).

The function text is similar to points in that it uses x and (optionally) y-
coordinates but adds a vector called labels containing the label strings to be
positioned on the graph. It includes extra tools for fine-tuning the placement of

148 7 Graphing Tools

the string on the graph, for example, the attributes pos and offset. The pos

attribute indicates the positions below, to the left of, above, and to the right of

the specified coordinates (respectively, 1, 2, 3, 4) and offset gives the offset of the

label from the specified coordinate in fractions of a character width. These two

options become relevant with long character strings that are not displayed

properly in R’s default display.
We have seen the lines function in Chapter 5. It is a function that accepts

coordinates and joins the corresponding points with lines.

7.5.4 Using type = "n"

With the plot function, it is possible to include the attribute type = "n" to

draw everything but the data. The graph is set up for data, including axes and

their labels. To exclude these, add axes = FALSE, xlab = "", ylab =
"". It then appears there is nothing left. However, this is not the case, because

the plot retains the data that were entered in the first part of the plot function.

The user is now in full control of constructing the plot. Do you want axes lines?

If so, where do youwant them and how do youwant them to look?Do youwant

to display the data as points or as lines? Everything that is included in the

default plot, and much more, can be altered and added to your plot. Here are

some of the available variations:

Command Description

abline Adds an a,b (intercept, slope) line, mainly regression, but also vertical
and horizontal lines

arrows Adds arrows and modifies the head styles

Axis Generic function to add an axis to a plot

axis Adds axes lines

box Adds different style boxes

contour Creates a contour plot, or adds contour lines to an existing plot

curve Draws a curve corresponding to the given function or expression

grid Adds grid to a plot

legend Adds legend to a plot

lines Adds lines

mtext Inserts text into the margins of the figure or in the
margin of the plot device

points Adds points, but may include type command

polygon Draws polygons with vertices defined by x and y

rect Draws rectangles

rug Adds a one dimensional representation of the data
to the plot on one of the two axes.

Segments Adds line segments

text Adds text inside the plot

title Adds a title

7.5 Revisiting the plot Function 149

7.5.5 Legends

The function legend appears difficult at first encounter, but is easily mastered.

In Fig. 7.9, a legend was added to a Cleveland dotplot. The code is

> legend("bottomright", c("values", "mean"),
pch = c(1, 19), bg ="white")

The first attribute may consist of an x- and y-coordinate, or an expression

such as shown here. Other valid expressions are "bottom", "bottom-
left", "left", "topleft", "top", "topright", "right", and

"center". Consult the legend help file for more options.
Zuur et al. (2009) used a bird dataset that was originally analysed in Loyn

(1987), and again in Quinn and Keough (2002). Forest bird densities were

measured in 56 forest patches in southeastern Victoria, Australia. The aim of

the study was to relate bird densities to six habitat variables: (1) size of the forest

patch, (2) distance to the nearest patch, (3) distance to the nearest larger patch,

(4) mean altitude of the patch, (5) year of isolation by clearing, and (6) an index

of stock grazing history (1 = light, 5 = intensive). A detailed analysis of these

data using linear regression is presented in Appendix A of Zuur et al. (2009).

The optimal linear regression model contained LOGAREA and GRAZE

(categorical). To visualise what this model is doing, we plot the fitted values.

There are five grazing levels, and, therefore, the linear regression (see the

summary command below) gives an equation relating bird abundance to

LOGAREA for each grazing level. These are given by

Observations with GRAZE ¼ 1: ABUNDi ¼ 15:7þ 7:2� LOGAREAi

Observations with GRAZE ¼ 2: ABUNDi ¼ 16:1þ 7:2� LOGAREAi

Observations with GRAZE ¼ 3: ABUNDi ¼ 15:5þ 7:2� LOGAREAi

Observations with GRAZE ¼ 4: ABUNDi ¼ 14:1þ 7:2� LOGAREAi

Observations with GRAZE ¼ 5: ABUNDi ¼ 3:8þ 7:2� LOGAREAi

Readers familiar with linear regression will recognise this as a linear regres-

sion model in which the intercept is corrected for the levels of the categorical

variable. Next, we (i) plot the ABUNDANCE data versus LOGAREA, (ii)

calculate fitted values for the five grazing regimes, (iii) add the five lines,

and (iv) add a legend. The resulting graph is presented in Fig. 7.11. The

following shows step by step how it was created.
First, read the data, apply the log transformation, and use the plot function.

We have previously used similar R code:

> setwd("C:/RBook/")
> Birds <- read.table(file = "loyn.txt", header = TRUE)
> Birds$LOGAREA <- log10(Birds$AREA)

150 7 Graphing Tools

> plot(x = Birds$LOGAREA, y = Birds$ABUND,
xlab = "Log transformed AREA",
ylab = "Bird abundance")1

To see the source of the five slopes and the intercept, use the code:

> M0 <- lm(ABUND~ LOGAREA + fGRAZE, data = Birds)
> summary(M0)

If you are not familiar with linear regression, do not spend time struggling to

comprehend this. The summary output contains the required information. To

predict fitted bird abundances per grazing level, we need the LOGAREA

values. The simplest method is to look at Fig. 7.11 and choose several arbitrary

values within the range of the observed data, say –1, 0, 1, 2, and 3:

> LAR <- seq(from = -1, to = 3, by = 1)
> LAR

[1] -1 0 1 2 3

Now we determine the abundance values per grazing level using simple

calculus and R code:

> ABUND1 <- 15.7 + 7.2 * LAR
> ABUND2 <- 16.1 + 7.2 * LAR
> ABUND3 <- 15.5 + 7.2 * LAR
> ABUND4 <- 14.1 + 7.2 * LAR
> ABUND5 <- 3.8 + 7.2 * LAR

–1 0 1 2 3

0
10

20
30

40

Log transformed AREA

B
ird

 a
bu

nd
an

ce

Graze 1
Graze 2
Graze 3
Graze 4
Graze 5

Fig. 7.11 Five fitted lines for the Loyn bird data. Each line is for a particular grazing regime

7.5 Revisiting the plot Function 151

Adding the fitted values as lines to the graph is also familiar territory (see

Chapter 5). We do not have a spaghetti problem, as the AREA data are sorted

from – 1 to 3.

> lines(LAR, ABUND1, lty = 1, lwd = 1, col =1)
> lines(LAR, ABUND2, lty = 2, lwd = 2, col =2)
> lines(LAR, ABUND3, lty = 3, lwd = 3, col =3)
> lines(LAR, ABUND4, lty = 4, lwd = 4, col =4)
> lines(LAR, ABUND5, lty = 5, lwd = 5, col =5)

Weadded visual interest with different line types, widths, and colours. Finally,

it is time to add the legend; see the R code below. First we define a string

legend.txt with five values containing the text that we want to use in the

legend. Thelegend function then places the legend in the top left position, the line

in the legend for the first grazing level is black (col = 1), solid (lty = 1), and
has normal line width (lwd = 1). The line in the legend for grazing level 5 is light
blue (col = 5), has the form - - - (lty = 5) and is thick (lwd = 5).

> legend.txt <- c("Graze 1", "Graze 2",
"Graze 3", "Graze 4", "Graze 5")

> legend("topleft", legend = legend.txt,
col = c(1, 2, 3, 4, 5),
lty = c(1, 2, 3, 4, 5),
lwd = c(1, 2, 3, 4, 5),
bty = "o", cex = 0.8)

The attribute cex specifies the size of the text in the legend, and the bty adds

a box around the legend.

Do Exercise 8 in Section 7.10. In this exercise, smoothers are used

for the male and female owl data and are superimposed onto the

graph. The legend function is used to identify them.

7.5.6 Identifying Points

The function identify is used to identify (and plot) points on a plot. It can be

done by giving the x, y coordinates of the plot or by simply entering the plot

object (which generally defines or includes coordinates). Here is an example:

> plot(y = Benthic$Richness, x = Benthic$NAP,
xlab = "Mean high tide (m)",
ylab = "Species richness", main = "Benthic data")

> identify(y = Benthic$Richness, x = Benthic$NAP)

152 7 Graphing Tools

With the attribute labels in the identify function, a character vector giving
labels for the points can be included. To specify the position and offset of the
labels relative to the points; place your mouse near a point and left-click; R will
plot the label number close to the point. Press ‘‘escape’’ to cancel the process. It
is also possible to use the identify function to obtain the sample numbers of
certain points; see its help file. Note that the identify function only works for
graphs created with the plot function, and not with boxplots, dotcharts, bar
charts, pie charts, and others.

7.5.7 Changing Fonts and Font Size*

This section is a bit more specialised and may be skipped upon first
reading. Fonts and font sizes are somewhat peculiar in R. When you
open a graphing device you can apply an attribute pointsize that will
be the default point size of plotted text. Default font mappings are pro-
vided for four device-independent font family names: "sans" for a sans-
serif font, "serif" for a serif font, "mono" for a monospaced font, and
"symbol" for a symbol font. Type windowsFonts() to see the font
types that are currently installed.

Font defines the font face. It is an integer that specifies which font face to
use for text. If possible, device drivers are organized so that 1 corresponds to
plain text, 2 to bold face, 3 to italic, and 4 to bold italic. To modify the default
font, we usually draw plots omitting the component for which we want
to change the default font and code it separately, including options for font
size, font face, and font family. For example, to add a title in a serif font to
Fig. 7.11, use

> title("Bird abundance", cex.main = 2,
family = "serif", font.main = 1)

This would plot ‘‘Bird abundance’’ as a title twice the default size, with a serif
font style in normal font face. For title there are special options for font size
and font face, cex.main and font.main. Sometimes youmay need to specify
the family using par. You can also change font and size for text, mtext,
axis, xlab, and ylab. Consult the help file for par for specific information
on changing fonts.

7.5.8 Adding Special Characters

Often youmaywant to include special characters in legends or labels. This is not
difficult in R, although it may require searching in several help files to find
exactly what you want. The function that is mostly used is expression.You
can get an impression of the possibilities by typing demo (plotmath).

7.5 Revisiting the plot Function 153

Here is a brief example: Mendes et al. (2007) measured the nitrogen isotopic

composition in growth layers of teeth from 11 sperm whales stranded in Scot-

land. Figure 7.12 shows a scatterplot of nitrogen isotope ratios versus age, for

one particular whale, nicknamed Moby. The y-label of the graph contains the

expression d15N. It is tempting to import this graph without the y-label into

Word and add the d15N before submission to a journal, but it can easily be done

in R using this code:

> setwd("C:/RBook/")
> Whales <- read.table(file="TeethNitrogen.txt",

header = TRUE)
> N.Moby <- Whales$X15N[Whales$Tooth == "Moby"]
> Age.Moby <- Whales$Age[Whales$Tooth == "Moby"]
> plot(x = Age.Moby, y = N.Moby, xlab = "Age",

ylab = expression(paste(delta^{15}, "N")))

The paste command joins the d15 and N, and the expression function

inserts the d15N.

7.5.9 Other Useful Functions

There are a number of other functions that may come in handy when

making graphs. Consult the help files for attributes that may, or must, be

provided.

10 20 30 40

13
14

15
16

Age

δ15
N

Fig. 7.12 Scatterplot of
nitrogen isotope ratios
versus age, as measured in
dental growth layers of an
individual whale,
nicknamed Moby. Note the
y-label

154 7 Graphing Tools

7.6 The Pairplot

In the previous graph, we used the plot function to make a scatterplot of two

continuous variables; the following demonstrates scatterplots for multiple con-

tinuous variables. This could be done by using the plot function to plot

variable 1 versus 2, 1 versus 3, 1 versus 4, and so on, and following with mfrow
and mar to put it all into a single graph. However, the R function pairs can be

used to produce amultipanel scatterplot.We use the benthic data for illustration:

> setwd("C:/RBook/")
> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)
> pairs(Benthic[, 2:9])

The first two lines import the data, and the pairs function is applied to all the

variables from the data frame Benthic with the exception of the first column,

which contains the labels. The resulting graph is presented in Fig. 7.132.
We have included species richness as the first variable. As a result, the first

row of the plot contains graphs of all variables against richness. The rest of the

plot shows graphs of all variables versus one another. From a statistical point of

view, we want to model richness as a function of all the other variables, hence

Functiona Description

plot.new Opens a new graphics frame, same as frame()

win.graph Opens extra second graph window. You can set width
and height of the screen

windows Similar to win.graph but with more options

savePlot Saves current plot as ("wmf", "emf", "png", "jpeg",
"jpg", "bmp", "ps", "eps", or "pdf")

locator Records the position of the cursor by clicking left
cursor; stops by clicking right cursor

range Returns a vector containing the minimum and
maximum of all the given arguments; useful for
setting x or y limits

matplot Plots columns of one matrix against the columns
of another; especially useful when multiple
Y columns and a single X. See also matlines and
matpoints for adding lines and points, respectively

persp Perspective plots of surfaces over an x–y plane

cut Converts a numeric variable into a factor

split Divides a vector or data frame with numeric values
into groups

aDon’t forget to include the brackets with these functions!

2 Using the command plot (Benthic [, 2:9]) will give the same graph, because
Benthic is a data frame, and the plot function recognises this and calls the function
plot.data.frame.

7.6 The Pairplot 155

clear relationships in the first row (or column) are good, whereas clear patterns
in the other panels (collinearity) are not good at all. The pairplot shows clear
relationships between some of the variables, for example, between species
richness and NAP and between grain size and sorting (this makes biological
sense, as sorting is a measure of energy).

7.6.1 Panel Functions

Half of the information in the pairplot appears superfluous, in as much as every
graph appears twice, once above the diagonal and once below, but with the axes
reversed. It is possible to specify panel functions to be applied to all panels, to
the diagonal panels, or to the panels above or below the diagonal (Fig. 7.14).
The R code for this can be found at the end of the pairs help file obtained by
entering ?pairs into the R console window.

> pairs(Benthic[, 2:9], diag.panel = panel.hist,
upper.panel = panel.smooth,
lower.panel = panel.cor)

Error in pairs.default(Benthic[, 2:9], diag.panel =
panel.hist, upper.panel = panel.smooth,: object
"panel.cor" not found

The problem here is that R does not recognise the panel.cor and the
panel.hist functions. These specific pieces of code from the end of the

Richness

8.0 9.0 10.5 2 4 6 8 0.00 0.15 0.30 50 150 250

Exposure

NAP

Beach

ograinsize

humus

chalk

0
15

–1
.0

2.
0

20
0

40
0

0
30

8.
0

10
.5

2
6

0.
00

0.
25

50
20

0

0 5 15 –1.0 0.5 2.0 200 300 400 0 20 40

sorting1

Fig. 7.13 Scatterplot matrix for variables in the benthic data. The diagonal shows the name of
the variable which is on the x-axis below and above it, and on the y-axis left and right of it

156 7 Graphing Tools

pairs help file must be copied and pasted into the R console. Copy the entire

function and rerun the pairs command above. For specific advice, see the

online R code for this book, which can be found at www.highstat.com. The

panel.cor and panel.hist code is complicated and beyond the scope of

this book, so is not addressed here. Simply copy and paste it.
If you are interested in using Pearson correlation coefficients in a pairplot,

see http://www.statmethods.net/graphs/scatterplot.html. This provides an

example, as well as a link to the package and a function that can be used to

colour entire blocks based on the value of the Pearson correlation.

Do Exercise 9 in Section 7.10. In this exercise, the pairs function

is used for the vegetation data.

7.7 The Coplot

7.7.1 A Coplot with a Single Conditioning Variable

The pairs function shows only two-way relationships. The next plotting tools

we discuss can illustrate three-way, or even four-way, relationships. This type of

plot is called a conditioning plot or coplot and is especially well suited to

visualizing how a response variable depends on a predictor, given other

Richness

8.0 9.0 10.5 2 4 6 8 0.00 0.15 0.30 50 150 250

0.58

Exposure

0.57 0.051
NAP

0.44 0.28 0.28
Beach

0.37 0.60 0.068 0.27
ograinsize

0.41 0.32 0.25 0.40 0.35
humus

0.26 0.40 0.15 0.18 0.45 0.28
chalk

0
15

–1
.0

2.
0

20
0

40
0

0
30

8.
0

10
.5

2
6

0.
00

0.
25

50
20

0

0.35 0.56 0.063 0.35 0.75 0.37

0 5 15 –1.0 0.5 2.0 200 300 400 0 20 40

0.79

sorting1

Fig. 7.14 The extended pairplot using histograms on the diagonal, scatter plots with smooth-
ers above the diagonal, and Pearson correlation coefficients with size proportionate to the
correlation below the diagonal. The code was taken from the pairs help file

7.7 The Coplot 157

predictors. Figure 7.15 is a plot of the RIKZ data using the variables Beach,

NAP, and Richness. The nine graphs represent beaches one to nine, which are

listed at the top and displayed in the separate panels, called the dependence

panels. Starting at the bottom row and going from left to right, the first row

depicts beaches one to three, the second row four to six, and the top row beaches

seven to nine. As you can see, the beach numbers are also given, although not

well placed. The R code to make the graph in Fig. 7.15 is as follows.

> setwd("C:/RBook/")
> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)
> coplot(Richness ~ NAP | as.factor(Beach), pch=19,

data = Benthic)

The function coplot uses a different notation than the plot function.

Variables to be plotted are given in a formula notation that uses the tilde operator

� as a separator between the dependent and the independent variables. Contrary

to what you have been using in the plot function where the first variable is

assumed to be the x-variable and the second variable the y-variable, the formula

notation always uses y� x. The above code thus directs R to plot species richness

(R) versus NAP. The addition of | as.factor(Beach) creates the panels and

indicates that the plot should be produced conditional on the variable Beach,

which is first coerced into a factor. Thedata attribute gives the command to look

in the Benthic data frame for the variables used in the formula.

–1.0 0.0 1.0 2.0

0
5

15

0
5

15

–1.0 0.0 1.0 2.0

0
5

15

–1.0 0.0 1.0 2.0

NAP

R
ic

hn
es

s

1 2 3 4 5 6 7 8 9

Given : as.factor(Beach)Fig. 7.15 Coplot for the
benthic data. The lower left
panel represents a
scatter!plot of richness versus
NAP for beach 1, the lower
right panel for beach 3, the
middle left for beach 4, and
the upper right for beach 9

158 7 Graphing Tools

Instead of using a categorical variable for the conditioning variable, we can

use a continuous variable, for example, grainsize. The following code creates

Fig. 7.16. Scatterplots of richness versus NAP are drawn for different grainsize

values.

> coplot(Richness ~ NAP | grainsize, pch=19,
data = Benthic)

The grainsize values were divided into six overlapping groups with approxi-
mately equal numbers of points. If the Richness/NAP relationship changes
along the grainsize gradient, giving a visual indication of the presence of an
interaction between NAP and grainsize, it may be worthwhile to include this
interaction term in, for example, a linear regression model.

The coplot function contains a large number of arguments that can be used
to create exciting plots. See its help file, obtained by ?coplot. The most useful
is panel, which takes a function that is carried out in each panel of the display.
By default coplot uses the points function, but we can easily create our own
function and apply it to each panel. For example, we may wish to add a linear
regression line to each panel in Fig. 7.15 (Fig. 7.17). If all the lines turn out to be
parallel, there is no visual evidence of an interaction between beach and NAP
(i.e., the richness � NAP relationship is the same along the entire stretch of
coastline). In this case, the lines do differ. Here is the code that created Fig. 7.17:

NAP

R
ic

hn
es

s
0

5
10

20

–1.0 0.0 1.0 2.0

–1.0 0.0 1.0 2.0–1.0 0.0 1.0 2.0

0
5

10
20

200 250 300 350 400

Given : grainsize

Fig. 7.16 Coplot using a
continuous conditioning
variable. The lower left panel
represents a scatterplot of
Richness versus NAP for
those observations that have
grainsize values between 185
and 220. The upper right
panel shows a scatterplot of
richness versus NAP for
observations with high
(>315) grainsize values. The
important question is
whether the Richness/NAP
relationship changes along
the grainsize gradient,
indicating interaction
between NAP and grainsize

7.7 The Coplot 159

> panel.lm = function(x, y, ...) {
tmp <- lm(y ~ x, na.action = na.omit)
abline(tmp)
points(x, y, ...)}

> coplot(Richness ~ NAP | as.factor(Beach), pch = 19,
panel = panel.lm, data = Benthic)

The function panel.lm defines how the data should be displayed in each

panel. Three dots at the end indicate that other arguments may be supplied that

will be evaluated in the function. The linear regression function lm is used to

store the data temporarily in the variable tmp, and any NAs are omitted from

the analysis. The function abline plots the line, and the function points
plots the points.

Another predefined panel function is panel.smooth. This uses the

LOESS smoother to add a smooth line.
As you can see above, we defined our own panel function. This facility is

useful for creating customized panel functions for use with coplot. For

example, means and confidence limits can be added to each panel, and con-

fidence limits can be added to regression lines.
Coplot is also a good tool for investigating the amount of data in each

combination of covariates.

Do Exercise 10 in Section 7.10. This exercise creates a coplot of the

vegetation data.

0
5

15

–1.0 0.0 1.0 2.0

0
5

15

–1.0 0.0 1.0 2.0

0
5

15

–1.0 0.0 1.0 2.0

NAP

R
ic

hn
es

s

1 2 3 4 5 6 7 8 9

Given : as.factor(Beach)Fig. 7.17 Coplot of the
RIKZ data showing species
richness versus NAP with a
separate panel for each of
the nine beaches

160 7 Graphing Tools

7.7.2 The Coplot with Two Conditioning Variables

One can include a third predictor variable in a coplot, but the benthic data do

not yield much additional information when one of the other variables is

included. Therefore we present another example: a subset of data analysed in

Cruikshanks et al. (2006). The data are available in the file SDI2003.txt. The

original research sampled 257 rivers in Ireland during 2002 and 2003. One of the

aims was to develop a new tool for identifying acid-sensitive waters, which is

currently done by measuring pH levels. The problem with pH is that it is

extremely variable within a catchment and depends on both flow conditions

and underlying geology. As an alternative measure, the Sodium Dominance

Index (SDI) was proposed. Of the 257 sites, 192 were nonforested and 65 were

forested. Zuur et al. (2009) modelled pH as a function of SDI, forested or

nonforested, and altitude, using regression models with spatial correlation.
The relationship between pH and SDImay have been affected by the altitude

gradient and forestation. Calculating this demands a three-way interaction term

between two continuous (SDI and altitude) and one categorical (forestation)

explanatory variable. Before including such an interaction in a model, we can

visualise the relationships with the coplot. In the previous section, we used

coplots with a single conditioning variable; here we use two conditioning

variables. We use the log-transformed altitude values. The coplot is shown in

Fig. 7.18. The R code is as follows.

SDI

pH
5

6
7

8

10 30 50 70

10 30 50 70 10 30 50 70

5
6

7
8

1.6 1.8 2.0 2.2 2.4 2.6 2.8

Given : LOGAlt

1

2

G
iv

en
 :

fF
or

es
te

dFig. 7.18 Coplot of the Irish
pH data. The panels show
the relationship between pH
and SDI for different
altitudes and whether a site
is forested. If the slopes of
the lines vary, you will want
to add an interaction term to
the regression model. If a
panel has no points, the
interaction cannot be
included

7.7 The Coplot 161

> setwd("C:/RBook/")
> pHEire <- read.table(file = "SDI2003.txt",

header = TRUE)
> pHEire$LOGAlt <- log10(pHEire$Altitude)
> pHEire$fForested <- factor(pHEire$Forested)
> coplot(pH ~ SDI | LOGAlt * fForested,

panel = panel.lm, data = pHEire)

We use the same panel.lm function as in the previous section. (This

requires copying and pasting it into the R console, if R has been shut down.)

Because the variable LOGAlt, the logarithmically transformed altitude, is

numeric, it is divided into a number of conditioning intervals, and, for each

interval, pH is plotted against SDI. In addition, the data are segregated based

on the Forested factor. The number and position of intervals for LOGAlt can be

controlled with the given.values argument; see the coplot help file. With-

out this argument, the numeric variable is divided into six intervals overlapping

by approximately 50. An easier approach may be using the number argument.

Run this command:

> coplot(pH ~ SDI | LOGAlt * fForested,
panel = panel.lm, data = pHEire, number = 2)

Compare the resulting coplot (which is not shown here) with that in

Fig. 7.18; this one has fewer panels. The number argument can also be used if

the coplot crashes due to an excessive number of panels.

7.7.3 Jazzing Up the Coplot*

This section is slightly more complicated (hence the asterisk in the title), and

may be omitted upon first reading.
Figure 7.18 shows the relationship between pH versus SDI, altitude and

forestation (and their interactions). To demonstrate what can be done, we

produce the same coplot as that in Fig. 7.18, but with points of different colours

depending on temperature. Temperatures above average are indicated by a light

grey dot, and those below average are shown by a dark dot (obviously, red and

blue dots would be better). Before this can be done, we need to use the following

code to create a new variable containing the grey colours.

> pHEire$Temp2 <- cut(pHEire$Temperature, breaks = 2)
> pHEire$Temp2.num <- as.numeric(pHEire$Temp2)

The cut function separates the temperature data into two regimes, because

we use breaks = 2. We encounter a problem in that the output, Temp2, is a
factor, as can be seen from entering:

162 7 Graphing Tools

> cut(pHEire$Temperature, breaks = 2)
[1] (1.89,7.4] (1.89,7.4] (1.89,7.4] (1.89,7.4]
[5] (1.89,7.4] (1.89,7.4] (1.89,7.4] (1.89,7.4]
[9] (1.89,7.4] (1.89,7.4] (1.89,7.4] (1.89,7.4]
[13] (1.89,7.4] (1.89,7.4] (7.4,12.9] (1.89,7.4]
...
[197] (7.4,12.9] (7.4,12.9] (7.4,12.9] (7.4,12.9]
[201] (7.4,12.9] (7.4,12.9] (7.4,12.9] (7.4,12.9]
[205] (7.4,12.9]
Levels: (1.89,7.4] (7.4,12.9]

Each temperature value is allocated to either the class 1.89 – 7.4 (below
average) or 7.4 – 12.9 (above average) degrees Celsius. A factor cannot be used
for colours or greyscales; therefore we convert Temp2 to a number, using the
as.numeric function. As a result, pHEire$Temp2.num is a vector with values
1 and 2.We could have done this in Excel, but the cut function is more efficient.
We are now ready to create the coplot in Fig. 7.19, using the following R code.

> coplot(pH ~ SDI | LOGAlt * fForested,
panel = panel.lm, data = pHEire,
number = 3, cex = 1.5, pch = 19,
col = gray(pHEire$Temp2.num / 3))

It seems that high pH values were obtained for low SDI values with Forested=2
(2 represents nonforested and 1 is forested) and above average temperature.

10 30 50 70

5
6

7
8

10 30 50 70 10 30 50 70

5
6

7
8

SDI

pH

1.6 1.8 2.0 2.2 2.4 2.6 2.8

Given : LOGAlt

1

2 G
iv

en
 :

fF
or

es
te

d

Fig. 7.19 Coplot for the pH
data using four predictor
variables: SDI, Forested,
altitude, and temperature.
The latter is shown by
symbols of two shades of
gray. Light grey dots
correspond to above average
temperature values, and
dark grey are below average

7.7 The Coplot 163

7.8 Combining Types of Plots*

Here we touch upon R’s more advanced graphing possibilities. There are

several graphing systems that can be used in R. All the graphs we have shown

were made by using the base package graphics. The R package called grid offers

many advanced possibilities. It is possible to combine different plots into a

single graph. We have already used the mfrow command to enable plotting

several graphs on one screen. Here we use layout to create complex plot

arrangements. Figure 7.20 shows a scatterplot of species richness versus NAP

and also includes the boxplots of each variable.

To produce this graph, we first need to define the number of graphs to

incorporate, their placement, and their size. In this case, we want to arrange a

2-by-2 windowwith the scatterplot in the lower left panel, one of the boxplots in

the upper left panel, and one boxplot in the lower right panel. For this we define

a matrix, let’s call it MyLayOut, with the following values.

> MyLayOut <- matrix(c(2, 0, 1, 3), nrow = 2, ncol=2,
byrow = TRUE)

> MyLayOut
[,1] [,2]

[1,] 2 0
[2,] 1 3

–1.0 0.0 0.5 1.0 1.5 2.0

0
5

10
15

20

NAP

R
ic

hn
es

s

Fig. 7.20 Combination of
scatterplot and boxplots for
the benthic data

164 7 Graphing Tools

The matrix command was introduced in Chapter 2. It looks intimidating,

but simply creates a matrix with the elements 2 and 0 on the first row, and 1 and

3 on the second row. We use this matrix inside the layout function, followed

by three plot commands. The first graph appears in the lower left corner

(specified by the 1 in the matrix), the second plot in the upper left (specified

by the 2), and the third graph in the lower right. Because there is a 0 in the upper

right position of MyLayout, no graph will be drawn in that quadrant.
The next part of the code consists of

> nf <- layout(mat = MyLayOut, widths = c(3, 1),
heights = c(1, 3), respect = TRUE)

The widths option specifies the relative width of the columns. In this case,

the first column, containing the scatterplot and the boxplot for NAP, is 3, and

the second column, containing the boxplot for richness, has a width of 1. The

heights column specifies the height of the rows. The respect = TRUE
ensures that a 1-unit in the vertical direction is the same as a 1-unit in the

horizontal direction. The effect of these settings in the layout function can be

visualised with the following command.

> layout.show(nf)

All that remains is to make the three graphs. We must ensure that the range

of the boxplot in panel 2 is synchronised with the range of the horizontal axis in

panel 1, and the same holds for panel 3 and the vertical axis in panel 1. We also

1

2

3
Fig. 7.21 Layout of the
graphical window. The
results of the first plot
command will go into panel
1 (lower left), the next into
panel 2, and the third plot
into panel 3

7.8 Combining Types of Plots* 165

need to avoid excessive white space around the graphs, which means some trial

and error with the mar values for each graph. We came up with the following

code.

> xrange <- c(min(Benthic$NAP), max(Benthic$NAP))
> yrange <- c(min(Benthic$Richness),

max(Benthic$Richness))
> #First graph
> par(mar = c(4, 4, 2, 2))
> plot(Benthic$NAP, Benthic$Richness, xlim = xrange,

ylim = yrange, xlab = "NAP", ylab = "Richness")
> #Second graph
> par(mar = c(0, 3, 1, 1))
> boxplot(Benthic$NAP, horizontal = TRUE, axes = FALSE,

frame.plot = FALSE, ylim = xrange, space = 0)
> #Third graph
> par(mar = c(3, 0, 1, 1))
> boxplot(Benthic$Richness, axes = FALSE,

ylim = yrange, space = 0, horiz = TRUE)

Most of the options are self-explanatory. Change the values of the mar, and
see what happens. Another function that can be used for similar purposes is the

split.screen; see its help file.

7.9 Which R Functions Did We Learn?

Table 7.1 shows the R functions that were introduced in this chapter.

Table 7.1 R functions introduced in this chapter

Function Purpose Example

pie Makes a pie chart pie(x)
pie3D Makes a 3-D piechart pie3D(x)
par Sets graph parameters par(...)
barplot Makes a bar chart barplot(x)
arrows Draws arrows arrows(x1,y1,x2,y2)
box Draws a box around the graph box()
boxplot Makes a boxplot boxplot(y)

boxplot(y�x)
text Adds text to a graph text(x,y,"hello")
points Adds points to an existing graph points(x,y)
legend Adds a legend legend("topleft", MyText,

lty = c(1,2,3))

166 7 Graphing Tools

7.10 Exercises

Exercise 1. The use of the pie function using the avian influenza data.

In Section 7.1, we used the total number of bird flu cases per year. Make a pie
chart to illustrate the totals by country. Place the labels such that they are
readable. The file BirdFludeaths.txt contains the data on deaths from the
disease. Make a pie chart showing total deaths per year and one showing deaths
per country.

Exercise 2. The use of the barchart and stripchart functions using a

vegetation dataset.

In Section 4.1, we calculated species richness, as well as its mean values and
standard deviations, in eight transects. Make a bar chart for the eight mean
values and add a vertical line for the standard error.

Make a graph in which the means are plotted as black points, the standard
errors as lines around the mean, and the observed data as open dots.

Exercise 3. The use of the boxplot function using a vegetation dataset.

Using the vegetation data in Exercise 2, make a boxplot showing the richness
values.

Exercise 4. The use of the boxplot function using a parasite dataset.

In Section 6.3.3, a cod parasite dataset was used. Make a boxplot of the
number of parasites (Intensity) conditional on area, sex, stage, or year. Try
combinations to detect interactions.

Exercise 5. The use of the dotchart function using the owl data.

In Section 7.3, we used the owl data.Make twoCleveland dotplots of nestling
negotiation and arrival time. Make a Cleveland dotplot showing arrival time
per night. The nest and food treatment variables show which observations were
made on the same night. See also Exercise 2 in Section 6.6.

Exercise 6. The use of the dotchart function using the parasite data.

Make a Cleveland dotplot for the parasite data that were used in Exercise 4.
Use the number of parasites (Intensity), and group the observations by area,

Table 7.1 (continued)

Function Purpose Example

title Adds a title title(MyText)
expression Allows for special symbols ylab = expression(paste(

delta�{15}, "N"))
pairs Creates multipanel scatterplots Pairs(X)
coplot Creates multipanel scatterplots Coplot(y�x|z)
layout Allows for multiple graphs in

the same window
layout(mat,widths,heights)
plot(x)
plot(y)

7.10 Exercises 167

sex, stage, or by year. Make a Cleveland dotplot showing depth, and group the
observations by prevalence.

Exercise 7. The use of the plot and axis functions using the owl data.

Apply a logarithmic transformation (use 10 as the base) on the nestling
negotiation data. Add the value of 1 to avoid problems with the log of 0. Plot
the transformed nestling negotiation data versus arrival time. Note that arrival
time is coded as 23.00, 24.00, 25.00, 26.00, and so on. Instead of using the labels
25, 26, etc. for arrival time, use 01.00, 02.00, and so on.

Make the same graph, but use back-transformed values as labels along the
vertical axis. This means using the log-transformed nestling negotiation data
but with the label 1 if the log-transformed value is 0, 10 if the log-transformed
value is 1, and so on.

Exercise 8. The use of the legend function using the owl data.

Add a smoother (see Chapter 5) to the graph created in Exercise 7 to visualise
the pattern for the male data and for the female data. Extract the data from the
males, fit a smoother, and superimpose this line onto the graph. Do the same for
the female data. Use a legend to identify the different curves. Do the same for
food treatment and night.

Exercise 9. The use of the pairs function using the vegetation data.

Make a pairplot for all the climatic variables in the vegetation data. Add
correlation coefficients in the lower panels. What does the graph tell you?

Exercise 10. The use of the coplot function using the vegetation data.

Plot species richness versus a covariate of your choice conditional on
transect.

168 7 Graphing Tools

	Graphing Tools
	7.1 The Pie Chart
	7.1.1 Pie Chart Showing Avian Influenza Data
	7.1.2 The par Function

	7.2 The Bar Chart and Strip Chart
	7.2.1 The Bar Chart Using the Avian Influenza Data
	7.2.2 A Bar Chart Showing Mean Values with Standard Deviations
	7.2.3 The Strip Chart for the Benthic Data

	7.3 Boxplot
	7.3.1 Boxplots Showing the Owl Data
	7.3.2 Boxplots Showing the Benthic Data

	7.4 Cleveland Dotplots
	7.4.1 Adding the Mean to a Cleveland Dotplot

	7.5 Revisiting the plot Function
	7.5.1 The Generic plot Function
	7.5.2 More Options for the plot Function
	7.5.3 Adding Extra Points, Text, and Lines
	7.5.4 Using type = ’’n’’
	7.5.5 Legends
	7.5.6 Identifying Points
	7.5.7 Changing Fonts and Font Size*
	7.5.8 Adding Special Characters
	7.5.9 Other Useful Functions

	7.6 The Pairplot
	7.6.1 Panel Functions

	7.7 The Coplot
	7.7.1 A Coplot with a Single Conditioning Variable
	7.7.2 The Coplot with Two Conditioning Variables
	7.7.3 Jazzing Up the Coplot*

	7.8 Combining Types of Plots*
	7.9 Which R Functions Did We Learn?
	7.10 Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

