Introduction to Game Theory

Tyler Moore

Computer Science & Engineering Department, SMU, Dallas, TX Slides are modified from version written by Benjamin Johnson, UC Berkeley

Lecture 15-16

view: rational choice model Game theory

Topics

We now discuss the final big idea in the course

- Introduction
- Security metrics and investment
- Measuring cybercrime
- Security games
- We now consider strategic interaction between players

2/4

Review: rational choice mode

Preferences and outcome Utility

entry expected utility: modeling security threats as random acts

Recall how we model rationality

- Economics attempts to model the decisions we make, when faced with multiple choices and when interacting with other strategic agents
- Rational choice theory (RCT): model for decision-making
- \bullet Game theory (GT): extends RCT to model strategic interactions

4 / 40

Review: rational choice mode

Preferences and outcomes Utility

Expected utility: modeling security threats as random act

Model of preferences

- ullet An agent is faced with a range of possible outcomes $o_1,o_2\in\mathcal{O},$ the set of all possible outcomes
- Notation
 - $o_1 \succ o_2$: the agent is strictly prefers o_1 to o_2 .
 - $o_1 \succeq o_2$: the agent weakly prefers o_1 to o_2 ;
 - ullet o $o_1 \sim o_2$: the agent is indifferent between o_1 and o_2 ;
- Outcomes can be also viewed as tuples of different properties $\hat{x}, \hat{y} \in \mathcal{O}$, where $\hat{x} = (x_1, x_2, \dots, x_n)$ and $\hat{y} = (y_1, y_2, \dots, y_n)$

Notes			
Votes			
Notes			
Notes			
. 10105			

Rational choice axioms

Rational choice theory assumes consistency in how outcomes are preferred.

Axiom

Completeness. For each pair of outcomes o_1 and o_2 , exactly one of the following holds: $o_1 \succ o_2$, $o_1 \sim o_2$, or $o_2 \succ o_1$.

 \Rightarrow Outcomes can always be compared

Axiom

Transitivity. For each triple of outcomes o_1 , o_2 , and o_3 , if $o_1 \succ o_2$ and $o_2 \succ o_3$, then $o_1 \succ o_3$.

⇒ People make choices among many different outcomes in a consistent manner

Utility

Rational choice theory defines utility as a way of quantifying consumer preferences

Definition

(Utility function) A utility function U maps a set of outcomes onto real-valued numbers, that is, $U \colon \mathcal{O} \to \mathbb{R}.$ U is defined such that $U(o_1) > U(o_2) \iff o_1 \succ o_2$.

Agents make a rational decision by picking the outcome with highest utility:

$$o^* = \arg\max_{o \in \mathcal{O}} U(o) \tag{1}$$

Why isn't utility theory enough?

- Only rarely do actions people take directly determine outcomes
- Instead there is uncertainty about which outcome will come to
- More realistic model: agent selects action a from set of all possible actions \mathcal{A} , and then outcomes \mathcal{O} are associated with probability distribution

Expected utility

(Expected utility (discrete)) The expected utility of an action $a \in \mathcal{A}$ is defined by adding up the utility for all outcomes weighed by their probability of occurrence:

$$E[U(a)] = \sum_{o \in \mathcal{O}} U(o) \cdot P(o|a)$$
 (2)

Agents make a rational decision by maximizing expected utility:

$$a^* = \arg\max_{a \in \mathcal{A}} E[U(a)] \tag{3}$$

Notes		
Notes		
Notes		
Notes		
Notes		

Example: process control system security

Figure 2.1: Example exposure time-map with red marking systems with known exploits Source: http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf

Example: process control system security

- \bullet Actions available: $A = \{disconnect, connect\}$
- Outcomes available: $\mathcal{O} = \{ \text{successful attack}, \text{no successful attack} \}$
- Probability of successful attack is 0.01 (P(attack|connect) = 0.01)
- ullet If systems are disconnected, then $P(\operatorname{attack}|\operatorname{disconnect})=0$

Example: process control system security

	SI	uccessful attack		no succ. attack	
Action	U	P(attack action)	U	P(no attack action)	E[U(action)]
connect	-50	0.01	10	0.99	9.4
disconnect	-10	0	-10	1	-10

 \Rightarrow risk-neutral IT security manager chooses to connect since E[U(connect)] > E[U(disconnect)].

This model assumes fixed probabilities for attack. Is this assumption realistic?

Games vs. Optimization

Games: Player vs Player

Notes		
Notes		
Notes		
Notes		
Notes		
Notes		

Strategy

Book of Qi

- War
- Business
- Policy

36 Stratagems (Examples)

- Befriend a distant state while attacking a neighbor
- Sacrifice the plum tree to preserve the peach tree
- Feign madness but keep your balance
- See http://en.wikipedia.org/wiki/Thirty-Six_Stratagems

Notes

Representing a game with a payoff matrix

- Suppose we have two players A and B.
 - A's actions $A_A = \{u, d\}$
 - B's actions $A_B = \{I, r\}$
 - Possible outcomes $\mathcal{O} = \{(u, l), (u, r), (d, l), (d, r)\}$
 - We represent 2-player, 2-strategy games with a payoff matrix

	Player B chooses I	Player <i>B</i> chooses <i>r</i>
Player A chooses u Player A chooses d	$(U_A(u, l), U_B(u, l))$ $(U_A(d, l), U_B(d, l))$	$(U_A(u,r), U_B(u,r))$ $(U_A(d,r), U_B(d,r))$

Returning to the process control system example

- Suppose we have two players: plant security manager and a terrorist
 - $\bullet \ \mathsf{Manager's} \ \mathsf{actions} \ \mathcal{A}_{\mathrm{mgr}} = \{ \mathrm{disconnect}, \mathrm{connect} \}$

 - Terrorist's actions $A_{\mathrm{terr}} = \{ \operatorname{attack}, \operatorname{don't} \operatorname{attack} \}$ Possible outcomes $\mathcal{O} = \{(a_1, a_3), (a_1, a_4), (a_2, a_3), (a_2, a_4) \}$
 - We represent 2-player, 2-strategy games with a payoff matrix

		Terrorist			
		attack	don't attack		
Manager	connect	(-50, 50)	(10,0)		
	disconnect	(-10, -10)	(-10, 0)		

Important Notions

Zero-Sum

In a zero-sum game, the sum of player utilities is zero.

zero-sum				not zero-sum		
	heads	tails		invest	defer	
heads tails	(1,-1) (-1,1)	(-1,1) (1,-1)	inves	st (1,1) (2,1)	(1, 2) (0, 0)	

Notes			
-			
N.I.			
Notes			
Notes			

Review: rational choice model Game theory

How can we determine which outcome will happen?

- We look for particular solution concepts
 - Dominant strategy equilibrium
 - Nash equilibrium
- Pareto optimal outcomes

19 / 40

Notes

Review: rational choice mode Game theor Introduction and notation Finding equilibrium outcomes

Dominant strategy equilibrium

- A player has a *dominant strategy* if that strategy achieves the highest payoff regardless of what other players do.
- A dominant strategy equilibrium is one in which each player has and plays her dominant strategy.

Example 1: Dominant Strategy Equilibria?

		Bob		
		left	right	
Alice	top bottom	(1, 2) (2, 1)	(0,1) (1,0)	

20 / 40

Review: rational choice mode

Introduction and notation

Nash equilibrium

Nash equilibrium

A Nash equilibrium is an assignment of strategies to players such that no player can improve her utility by changing strategies.

- A Nash equilibrium is called *strong* if every player strictly prefers their strategy given the current configuration.
- It is called *weak* if at least one player is indifferent about changing strategies.

Nash equilibrium for 2-player game

For a 2-person game between players A and B, a pair of strategies (a_i,a_j) is a Nash equilibrium if $U_A(a_i,a_j) \geq Utility_A(a_i',a_j)$ for every $i' \in \mathcal{A}_A$ where $i' \neq i$ and $U_B(a_i,a_j) \geq U_B(a_i,a_{j'})$ for every $j \in \mathcal{A}_B$ where $j' \neq j$.

21 / 40

Review: rational choice m

Finding equilibrium outcome

Finding Nash equilibria

Nash equilibrium for 2-player game

For a 2-person game between players A and B, a pair of strategies (a_i,a_j) is a Nash equilibrium if $U_A(a_i,a_j) \geq U_A(a_{i'},a_j)$ for every $i' \in \mathcal{A}_A$ where $i' \neq i$ and $U_B(a_i,a_j) \geq U_B(a_i,a_{j'})$ for every $j \in \mathcal{A}_B$ where $j' \neq j$.

Example 1: Nash equilibria?

		Bob left right		(top,left)?:	$U_A(\text{top, left}) > U_A(\text{bottom, left})$ 2 > 0 ? yes! $U_B(\text{top, left}) > U_B(\text{top, right})$? 1 > 0 ? yes!		
	Alice	top bottom	(2,1) $(0,0)$	(0,0) (1,2)	(top,right)?:	$U_A(\text{top, right}) > U_A(\text{bottom, rig})$ 0 > 1 ? no! $U_B(\text{top, right}) > U_B(\text{top, left})$? 0 > 1 ? no!	ht)

-			
-			
Notes			
Notes			

Exercise: is there a dominant strategy or Nash equilibrium for these games?

	left	right		left	right
top	(1,1)	(1, 2)	top	(1,-1)	(-1, 1)
top bottom	(2,1)	(0,0)	bottom	(1,-1) $(-1,1)$	(1, -1)

Review: rational choice model Game theory Introduction and notation Finding equilibrium outcomes

Pareto Optimality

Definition

An outcome of a game is Pareto optimal if no other outcome makes at least one player strictly better off, while leaving every player at least as well off.

Example: Pareto-optimal outcome?

	cooperate	defect
cooperate	(-1,-1)	(-5,0)
defect	(0,-5)	(-2,-2)

24 / 40

Review: rational choice mode Game theory Introduction and notation

Prisoners' dilemma

	deny	confess
deny	(-1, -1)	(-5,0)
confess	(0, -5)	(-2, -2)

05 /40

eview: rational choice mod

Finding equilibrium outcome

Thoughts on the Prisoners' Dilemma

- Can you see why the equilibrium strategy is not always Pareto efficient?
- Exemplifies the difficulty of cooperation when players can't commit to a actions in advance
- In a *repeated game*, cooperation can emerge because anticipated future benefits shift rewards
- But we are studying *one-shot* games, where there is no anticipated future benefit
- Here's one way to use psychology to commit to a strategy: http://www.tutor2u.net/blog/index.php/economics/comments/game-show-game-theory

Notes		
Notes		
Notes		
Notes		

Review: rational choice mod

ntroduction and notation

Split or Steal

		Nick		
		split	steal	
Ibrahim	split steal	(6800, 6800) (13600, 0)	(0, 13 600) (0, 0)	

27 / 40

Review: rational choice model Game theory Introduction and notation Finding equilibrium outcomes

Prisoners' dilemma in infosec: sharing security data

Note, this only applies when both parties are of the same type, and can benefit each other from sharing. Doesn't apply in the case of take-down companies due to the outsourcing of security

28 / 40

Review: rational choice mod

Finding equilibrium outcome

Assurance games: Cold war arms race

		USSR	
		refrain build	
USA	refrain build	(4,4)	(1,3)
	build	(3.1)	(2,2)

Exercise: compute the equilibrium outcome (Nash or dominant strategy)

29 / 40

Review: rational choice model

Introduction and notation

Assurance games in infosec: Cyber arms race

		Russia	
		refrain build	
USA	refrain	(4,4)	(1,3)
	build	(3,1)	(2,2)

Notes			
Notes			
-			
Notes			
Notes			

Assurance games in infosec: Upgrading protocols

Many security protocols (e.g., DNSSEC, BGPSEC) require widespread adoption to be useful

	upgrade	don't upgrade
upgrade	(4,4)	(1,3)
don't upgrade	(3,1)	(2,2)

Introduction and notation Finding equilibrium outcomes

Battle of the sexes

	party	home
party	(10, 5)	(0,0)
home	(0,0)	(5, 10)

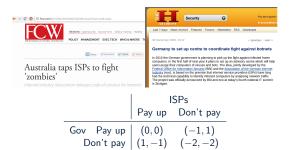
Introduction and notation Finding equilibrium outcomes

Stag-hunt games and infosec: joint cybercrime defense

 $\mathsf{Stag}\ \mathsf{hunt}$ stag hare stag (10, 10)(0,7)hare (7,0)(7,7)

♦ CONFICKER WORKING GROUP

Coordinating marware response				
	join WG	protect firm		
join WG	(10, 10)	(0,7)		
protect firm	(7.0)	(7 7)		


Chicken

	dare	chicken
dare	(0,0)	(7, 2)
chicken	(2,7)	(5,5)

INOTES			
Notes			
Notes			
Notes			

Chicken in infosec: who pays for malware cleanup?

35 / 40

How to coordinate (Varian, Intermediate Microeconomics)

- Goals of coordination game: force the other player to cooperate
 - Assurance game: "coordinate at an equilibrium that you both like"
 - Stag-hunt game: "coordinate at an equilibrium that you both like"
 - Battle of the sexes: "coordinate at an equilibrium that one of you likes"
 - **Prisoner's dilemma**: "play something other than an equilibrium strategy"
 - Chicken: "make a choice leading to your preferred outcome"

36 / 4

Game theory

Introduction and notation Finding equilibrium outcomes

How to coordinate (Varian, Intermediate Microeconomics)

- In assurance, stag-hunt, battle-of-the-sexes, and chicken, coordination can be achieved by one player moving first
- In prisoner's dilemma, that doesn't work? Why not?
- Instead, for prisoner's dilemma games one must use repetition or contracts.
- Robert Axelrod ran repeated game tournaments where he invited economists to submit strategies for prisoner's dilemma in repeated games
- Winning strategy? Tit-for-tat

37 / 40

Review: rational choice mod Game theo Finding equilibrium outcom

Assurance games: Cyber arms race

		Russia	
		refrain	build
USA	refrain	(4,4)	(1,3)
	build	(3.1)	(2,2)

Notes		
Notes		
Notes		
Notes		

Review: rational choice model Game theory Introduction and notation Finding equilibrium outcomes

Russia proposed a cyberwar peace treaty

rational choice model
Game theory

Introduction and notation
Finding equilibrium outcomes US Department of Homeland Security signals support for **DNSSEC**

DHS wins national cybersecurity award for DNSSEC work

Notes	
Notes	
Notes	
Notes	