
Greedy algorithms
Constructing minimum spanning trees

Tyler Moore

CSE 3353, SMU, Dallas, TX

Lecture 14

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie

Hetland.

Weighted Graph Data Structures

a

b

d

c

e

f

h

g

2 1

3 9

4

4

38

7

5

2

2

2

1

6

9

8

Nested Adjacency
Dictionaries w/ Edge Weights

N = {
’ a ’ :{ ’ b ’ : 2 , ’ c ’ : 1 , ’ d ’ : 3 , ’ e ’ : 9 , ’ f ’ : 4} ,
’ b ’ :{ ’ c ’ : 4 , ’ e ’ : 3} ,
’ c ’ :{ ’ d ’ : 8} ,
’ d ’ :{ ’ e ’ : 7} ,
’ e ’ :{ ’ f ’ : 5} ,
’ f ’ :{ ’ c ’ : 2 , ’ g ’ : 2 , ’ h ’ : 2} ,
’ g ’ :{ ’ f ’ : 1 , ’ h ’ : 6} ,
’ h ’ :{ ’ f ’ : 9 , ’ g ’ : 8}
}
>>> ’ b ’ i n N[’ a ’] # Neighborhood membership
True
>>> l e n (N[’ f ’]) # Degree
3
>>> N[’ a ’] [’ b ’]
Edge we ight f o r (a , b)
2

2 / 31

Minimum Spanning Trees

A tree is a connected graph with no cycles

A spanning tree is a subgraph of G which has the same set of vertices
of G and is a tree

A minimum spanning tree of a weighted graph G is the spanning tree
of G whose edges sum to minimum weight

There can be more than one minimum spanning tree in a graph
(consider a graph with identical weight edges)

Minimum spanning trees are useful in constructing networks, by
describing the way to connect a set of sites using the smallest total
amount of wire

3 / 31

Minimum Spanning Trees

4 / 31

Why Minimum Spanning Trees

The minimum spanning tree problem has a long history – the first
algorithm dates back to at least 1926!

Minimum spanning trees are taught in algorithms courses since
1 it arises in many applications
2 it gives an example where greedy algorithms always give the best

answer
3 Clever data structures are necessary to make it work efficiently

In greedy algorithms, we decide what to do next by selecting the best
local option from all available choices, without regard to the global
structure.

5 / 31

Prim’s algorithm

If G is connected, every vertex will appear in the minimum spanning
tree. (If not, we can talk about a minimum spanning forest.)

Prims algorithm starts from one vertex and grows the rest of the tree
an edge at a time.

As a greedy algorithm, which edge should we pick? The cheapest edge
with which can grow the tree by one vertex without creating a cycle.

6 / 31

Prim’s algorithm

During execution each vertex v is either in the tree, fringe (meaning
there exists an edge from a tree vertex to v) or unseen (meaning v is
more than one edge away).

def Prim-MST(G):

Select an arbitrary vertex s to start the tree from.

While (there are still non-tree vertices)

Select the edge of minimum weight between

a tree and nontree vertex.

Add the selected edge and vertex to the

minimum spanning tree.

7 / 31

Example run of Prim’s algorithm

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

g

8 / 31

Correctness of Prim’s algorithm

a

b

c

d

e f

g h

i

Let’s talk through a “proof” by contradiction
1 Suppose there is a graph G where Prim’s alg. does not find the MST
2 If so, there must be a first edge (e, f) Prim adds so that the partial

tree cannot be extended to an MST
3 But if (e, f) is not in MST (G), there must be a path in MST (G) from

e to f since the tree is connected. Suppose (d , g) is the first path edge.
4 W (e, f) ≥ W (d , g) since (e, f) is not in the MST
5 But W (d , g) ≥ W (e, f) since we assume Prim made a mistake
6 Thus, by contradiction, Prim must find an MST

9 / 31

Efficiency of Prim’s algorithm

Efficiency depends on the data structure we use to implement the
algorithm

Simplest approach is O(nm):
1 Loop through all vertices (O(n))
2 At each step, check edges and find the lowest-cost fringe edge that

finds an unseen vertex (O(n))

But we can do better (O(m + n lg n)) by using a priority queue to
select edges with lower weight

10 / 31

Prim’s algorithm implementation

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

g

G = {
’ a ’ :{ ’ b ’ : 7 , ’ d ’ : 5} ,
’ b ’ :{ ’ a ’ : 7 , ’ d ’ : 9 , ’ c ’ : 8 , ’ e ’ : 7} ,
’ c ’ :{ ’ b ’ : 8 , ’ e ’ : 5} ,
’ d ’ :{ ’ a ’ : 5 , ’ b ’ : 9 , ’ e ’ : 1 5 , ’ f ’ : 6} ,
’ e ’ :{ ’ b ’ : 7 , ’ c ’ : 5 , ’ d ’ : 1 5 , ’ f ’ : 8 , ’ g ’ : 9} ,
’ f ’ :{ ’ d ’ : 6 , ’ e ’ : 8 , ’ g ’ : 11} ,
’ g ’ :{ ’ e ’ : 9 , ’ f ’ : 11}

}

11 / 31

Prim’s algorithm implementation

from heapq import heappop , heappush
def pr im mst (G, s) :

V, T = [] , { } #V: v e r t i c e s i n MST, T: MST
P r i o r i t y Queue (weight , edge1 , edge2)
Q = [(0 , None , s)]
wh i l e Q:

, p , u = heappop (Q)#choose edge w/ sma l l e s t we ight
i f u i n V: cont inue #sk i p any v e r t i c e s a l r e a d y i n MST
V. append (u)
#bu i l d MST s t r u c t u r e
i f p i s None :

pass
e l i f p i n T:

T[p] . append (u)
e l s e :

T[p]=[u]
f o r v , w i n G[u] . i t ems () : #add new edges to f r i n g e

heappush (Q, (w, u , v))
r e t u r n T

”””
>>> pr im mst (G, ’ d ’)
{ ’ a ’ : [’ b ’] , ’ c ’ : [’ e ’] , ’ b ’ : [’ c ’] , ’ e ’ : [’ g ’] , ’ d ’ : [’ a ’ , ’ f ’]}

12 / 31

Output from Prim’s algorithm implementation

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

g

>>> prim_mst(G,’d’)

{’a’: [’b’], ’b’: [’e’], ’e’: [’c’, ’g’], ’d’: [’a’, ’f’]}

13 / 31

Exercise: Compute Prim’s algorithm starting from a
(number edges by time added)

a

b

c

d

e

f

g

5

12

7

8

9

4

3

4

2

5

7

2

14 / 31

Kruskal’s algorithm

Instead of building the MST by incrementally adding vertices, we can
incrementally add the smallest edges to the MST so long as they
don’t create a cycle

def Kruskal-MST(G):

Put the edges in a list sorted by weight

count = 0

while (count<n-1) do

Get the next edge from the list (v,w)

if (component(v) != component(w))

add (v,w) to MST

count+=1

merge component(v) and component(w)

15 / 31

Example run of Kruskal’s algorithm

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

a

d e

c

d

f

a

bb

ee

g

16 / 31

Correctness of Kruskal’s algorithm

a

b

c

d

e f

g h

i

Let’s talk through a “proof” by contradiction
1 Suppose there is a graph G where Kruskal does not find the MST
2 If so, there must be a first edge (e, f) Kruskal adds so that the partial

tree cannot be extended to an MST
3 Inserting (e, f) in MST (G) creates a cycle
4 Since e & f were in different components when (e, f) was inserted, at

least one edge (say (d , g)) in MST (G) must be evaluated after (e, f).
5 Since Kruskal adds edges by increasing weight, W (d , g) ≥ W (e, f)
6 But then replacing (d , g) with (e, f) in the MST creates a smaller tree
7 Thus, by contradiction, Kruskal must find an MST

17 / 31

Exercise: Compute Kruskal’s algorithm (number edges by
time added)

a

b

c

d

e

f

g

5

12

7

8

9

4

3

4

2

5

7

2

18 / 31

How fast is Kruskal’s algorithm?

What is the simplest implementation?

Sort the m edges in O(m lg m) time.
For each edge in order, test whether it creates a cycle in the forest we
have thus far built
If a cycle is found, then discard, otherwise add to forest. With a
BFS/DFS, this can be done in O(n) time (since the tree has at most n
edges).

What is the running time?

O(mn)
Can we do better?
Key is to increase the efficiency of testing component membership

19 / 31

A necessary detour: set partition

A set partition is a partitioning of the elements of a universal set (i.e.,
the set containing all elements) into a collection of disjoint subsets

Consequently, each element must be in exactly one subset

We’ve already seen set partitions with bipartite graphs

We can represent the connected components of a graph as a set
partition

So we need to find an algorithm that can solve the set partition
problem efficiently: enter the union-find algorithm

20 / 31

Union-Find Algorithm

We need a data structure for maintaining sets which can test if two
elements are in the same and merge two sets together.

These can be implemented by union and find operations, where

find(i) Return the label of the root of tree containing element i , by
walking up the parent pointers until there is no where to go.
union(i,j): Link the root of one of the trees (say containing i) to the
root of the tree containing the other (say j) so find(i) now equals
find(j).

Ideally, we’d like the find to be logarithmic in the number of nodes
and the union to take constant time

Why do we only link the root of the trees together in union and not
all nodes in the tree?

21 / 31

Example of Union-Find

a

b c

d e

f g

7

8
5

9

7

515

6

8

9

11

a

d e

c

d

f

a

b

Union-find trees

a

b

c

d ef

g

v C[v] findk(v) R[v]

a a a 2
b f a 0
c c c 1
d a a 0
e c c 0
f a a 1
g g g 0

22 / 31

Example of Union-Find

a

b c

d e

f g

7

8
5

9

7

515

6

8

9

11

a

d e

c

d

f

a

bb

e

Union-find trees

a

b

c

d ef

g

v C[v] findk(v) R[v]

a a a 2
b f a 0
c c a c a 1
d a a 0
e c c a 0
f a a 1
g g g 0

22 / 31

Implementing Union-Find

def f i n d k (C , u) : # Find component r ep .
whi le C[u] != u : # Rep . would po i n t to i t s e l f

u = C[u]
return u

def un ionk (C , R , u , v) :
u , v = f i n d k (C , u) , f i n d k (C , v)
i f R[u] > R[v] : # Union by rank

C[v] = u
e l s e :

C [u] = v
i f R[u] == R[v] : # A t i e : Move v up a l e v e l

R[v] += 1

23 / 31

Implementing Kruskal’s algorithm

def k r u s k a l (G) :
E = [(G[u] [v] , u , v) f o r u i n G f o r v i n G[u]]
T = s e t () # Empty p a r t i a l s o l u t i o n
C = {u : u f o r u i n G} # Component r e p s
R = {u : 0 f o r u i n G}
f o r , u , v i n s o r t e d (E) : # Edges , s o r t e d by we ight

i f f i n d k (C , u) != f i n d k (C , v) :
T . add ((u , v)) # D i f f e r e n t r e p s ? Use i t !
un ionk (C , R , u , v) # Combine components

return T

24 / 31

�����������

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

26 / 31

43

Goal. Given a set � of � objects labeled ���������, partition into clusters so

that objects in different clusters are far apart.

Applications.

�Routing in mobile ad hoc networks.

�Document categorization for web search.

�Similarity searching in medical image databases

�Skycat: cluster 109 sky objects into stars, quasars, galaxies.

�...

���

����������

27 / 31

k-clustering. Divide objects into � non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

���������������� iff ������� [identity of indiscernibles]

������������≥���	
 	
 	
 	
 	
 [nonnegativity]

������������������������ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer �, find a �-clustering of maximum spacing.

44

�����������������������������

������������

distance between two clusters distance between

two closest clusters

28 / 31

45

���������������������������

“Well-known” algorithm in science literature for single-linkage k-clustering:

�Form a graph on the node set �, corresponding to � clusters.

�Find the closest pair of objects such that each object is in a different

cluster, and add an edge between them.

�Repeat ����� times until there are exactly � clusters.

Key observation. This procedure is precisely Kruskal's algorithm

(except we stop when there are � connected components).

Alternative. Find an MST and delete the ����� longest edges.

29 / 31

Theorem. Let �� denote the clustering ����������� formed by deleting the

����� longest edges of an MST. Then, �� is a �-clustering of max spacing.

Pf. Let � denote some other clustering ���������.

�The spacing of �� is the length �� of the �������st longest edge in MST.

�Let ���and��� be in the same cluster in ��, say ����, but different clusters

in �, say �� and ��.

�Some edge ������ on ������� path in ���� spans two different clusters in �.

�Edge ������ has length ≤��� since it wasn't deleted.

�Spacing of � is ≤��� since � and � are in different clusters. ▪

46

��������������������������������������

� ���
��

�� ��

���

edges left after deleting

k – 1 longest edges

from a MST

30 / 31

47

Tumors in similar tissues cluster together.

����������������������������������

gene 1

gene n

gene expressed

gene not expressed

������������������������������

31 / 31

