Weighted Graph Data Structures

2/31

Minimum Spanning Trees

Minimum Spanning Trees

- A tree is a connected graph with no cycles
- A <u>spanning tree</u> is a subgraph of *G* which has the same set of vertices of *G* and is a tree
- A <u>minimum spanning tree</u> of a weighted graph *G* is the spanning tree of G whose edges sum to minimum weight
- There can be more than one minimum spanning tree in a graph (consider a graph with identical weight edges)
- Minimum spanning trees are useful in constructing networks, by describing the way to connect a set of sites using the smallest total amount of wire

Why Minimum Spanning Trees

Prim's algorithm

- The minimum spanning tree problem has a long history the first algorithm dates back to at least 1926!
- Minimum spanning trees are taught in algorithms courses since
 - it arises in many applications
 - it gives an example where greedy algorithms always give the best answer
 - Olever data structures are necessary to make it work efficiently
- In greedy algorithms, we decide what to do next by selecting the best local option from all available choices, without regard to the global structure.

- If G is connected, every vertex will appear in the minimum spanning tree. (If not, we can talk about a minimum spanning forest.)
- Prims algorithm starts from one vertex and grows the rest of the tree an edge at a time.
- As a greedy algorithm, which edge should we pick? The cheapest edge with which can grow the tree by one vertex without creating a cycle.

6/31

5/31

Prim's algorithm

• During execution each vertex v is either in the tree, fringe (meaning there exists an edge from a tree vertex to v) or unseen (meaning v is more than one edge away).

def Prim-MST(G):

Select an arbitrary vertex s to start the tree from.
While (there are still non-tree vertices)
 Select the edge of minimum weight between
 a tree and nontree vertex.
Add the selected edge and vertex to the
 minimum spanning tree.

Example run of Prim's algorithm

Correctness of Prim's algorithm

- Let's talk through a "proof" by contradiction
 - Suppose there is a graph G where Prim's alg. does not find the MST
 - If so, there must be a first edge (e, f) Prim adds so that the partial tree cannot be extended to an MST
 - But if (e, f) is not in MST(G), there must be a path in MST(G) from e to f since the tree is connected. Suppose (d, g) is the first path edge.
 - $W(e, f) \ge W(d, g)$ since (e, f) is not in the MST
 - So But $W(d,g) \ge W(e,f)$ since we assume Prim made a mistake
 - Thus, by contradiction, Prim must find an MST

9/31

Prim's algorithm implementation

Efficiency of Prim's algorithm

- Efficiency depends on the data structure we use to implement the algorithm
- Simplest approach is O(nm):
 - 1 Loop through all vertices (O(n))
 - At each step, check edges and find the lowest-cost fringe edge that finds an unseen vertex (O(n))
- But we can do better (O(m + n lg n)) by using a priority queue to select edges with lower weight

10/31

Prim's algorithm implementation

```
from heapq import heappop, heappush
def prim_mst(G, s):
    V, T = [], \{\} #V: vertices in MST, T: MST
    # Priority Queue (weight, edge1, edge2)
    Q = [(0, None, s)]
    while Q:
        _, p, u = heappop(Q)\#choose edge w/ smallest weight
        if u in V: continue #skip any vertices already in MST
        V.append(u)
        #build MST structure
        if p is None:
            pass
        elif p in T:
            T[p].append(u)
        else:
            T[p] = [u]
        for v, w in G[u].items(): #add new edges to fringe
            heappush(Q, (w, u, v))
    return T
.....
>>> prim_mst(G, 'd')
```

```
{ 'a ': [ 'b '], ` 'c ': [ 'e '], 'b ': [ 'c '], 'e ': [ 'g '], 'd ': [ 'a ', 'f ']}
```

Output from Prim's algorithm implementation

>>> prim_mst(G,'d')
{'a': ['b'], 'b': ['e'], 'e': ['c', 'g'], 'd': ['a', 'f']}

13/31

Exercise: Compute Prim's algorithm starting from *a* (number edges by time added)

14/31

Kruskal's algorithm

• Instead of building the MST by incrementally adding vertices, we can incrementally add the smallest edges to the MST so long as they don't create a cycle

```
def Kruskal-MST(G):
```

Put the edges in a list sorted by weight count = 0 while (count<n-1) do Get the next edge from the list (v,w) if (component(v) != component(w)) add (v,w) to MST count+=1 merge component(v) and component(w)

Example run of Kruskal's algorithm

Correctness of Kruskal's algorithm

- Let's talk through a "proof" by contradiction
 - Suppose there is a graph G where Kruskal does not find the MST
 - If so, there must be a first edge (e, f) Kruskal adds so that the partial tree cannot be extended to an MST
 - Inserting (e, f) in MST(G) creates a cycle
 - Since e & f were in different components when (e, f) was inserted, at least one edge (say (d, g)) in MST(G) must be evaluated after (e, f).
 - Since Kruskal adds edges by increasing weight, $W(d,g) \ge W(e,f)$
 - **(**) But then replacing (d,g) with (e,f) in the MST creates a smaller tree
 - Thus, by contradiction, Kruskal must find an MST

17/31

Exercise: Compute Kruskal's algorithm (number edges by time added)

18 / 31

How fast is Kruskal's algorithm?

A necessary detour: set partition

- What is the simplest implementation?
 - Sort the m edges in O(m lg m) time.
 - For each edge in order, test whether it creates a cycle in the forest we have thus far built
 - If a cycle is found, then discard, otherwise add to forest. With a BFS/DFS, this can be done in O(n) time (since the tree has at most n edges).
- What is the running time?
 - *O*(*mn*)
 - Can we do better?
 - Key is to increase the efficiency of testing component membership

- A <u>set partition</u> is a partitioning of the elements of a universal set (i.e., the set containing all elements) into a collection of disjoint subsets
- Consequently, each element must be in exactly one subset
- We've already seen set partitions with bipartite graphs
- We can represent the connected components of a graph as a set partition
- So we need to find an algorithm that can solve the set partition problem efficiently: enter the union-find algorithm

Union-Find Algorithm

Example of Union-Find

- We need a data structure for maintaining sets which can test if two elements are in the same and merge two sets together.
- These can be implemented by union and find operations, where
 - find(*i*) Return the label of the root of tree containing element *i*, by walking up the parent pointers until there is no where to go.
 - union(*i*,*j*): Link the root of one of the trees (say containing *i*) to the root of the tree containing the other (say *j*) so find(*i*) now equals find(j).
- Ideally, we'd like the find to be logarithmic in the number of nodes and the union to take constant time
- Why do we only link the root of the trees together in union and not all nodes in the tree?

Example of Union-Find

Implementing Union-Find

21/31

22/31

SECTION 4.7

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences

26/31

24/31

Clustering

Goal. Given a set *U* of *n* objects labeled $p_1, ..., p_n$, partition into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

- · Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 109 sky objects into stars, quasars, galaxies.

• ...

Clustering of maximum spacing

k-clustering. Divide objects into *k* non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

- $d(p_i, p_j) = 0$ iff $p_i = p_j$ [identity of indiscernibles]
- $d(p_i, p_j) \ge 0$ [nonnegativity]
- $d(p_i, p_j) = d(p_j, p_j)$ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer *k*, find a *k*-clustering of maximum spacing.

Greedy clustering algorithm

"Well-known" algorithm in science literature for single-linkage k-clustering:

- Form a graph on the node set *U*, corresponding to *n* clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the k - 1 longest edges.

45 29 / 31

Greedy clustering algorithm: analysis

Theorem. Let C^* denote the clustering C^*_1, \ldots, C^*_k formed by deleting the k-1 longest edges of an MST. Then, C^* is a *k*-clustering of max spacing.

- Pf. Let *C* denote some other clustering $C_1, ..., C_k$.
- The spacing of C^* is the length d^* of the $(k-1)^{st}$ longest edge in MST.
- Let p_i and p_j be in the same cluster in C^* , say C^*_r , but different clusters in C, say C_s and C_r .
- Some edge (p,q) on $p_i p_j$ path in C^*_r spans two different clusters in C.
- Edge (p,q) has length $\leq d^*$ since it wasn't deleted.
- Spacing of C is $\leq d^*$ since p and q are in different clusters. •

47