Weighted Graph Data Structures

Greedy algorithms _
Nested Adjacency

Constructing minimum spanning trees Dictionaries w/ Edge Weights
N = {
"a':{'b’:2,'c’:1,'d":3,'e":9,"'f":4},
Tyler Moore 'b':{'c':4,'e" 3},
"c¢':{'d":8},
'd':{'e’: 7},
CSE 3353, SMU, Dallas, TX et [fr5)
fr{'c’:2,'g":2,'h":2},
Lecture 14 ﬁ%iéhg}
o 9,'g":8}
>>> 'b’ in N['a’'] # Neighborhood membership
True
>>> len(N['f']) # Degree
Some slides created by or adapted from Dr. Kevin Wayne. For more information see 3
))) : >>> N['a']['b"]
http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie # Edge Weight for (a' b)
Hetland. 2

Minimum Spanning Trees Minimum Spanning Trees

A tree is a connected graph with no cycles

A spanning tree is a subgraph of G which has the same set of vertices

of G and is a tree .' ® e .
@ A minimum spanning tree of a weighted graph G is the spanning tree 4 b4

of G whose edges sum to minimum weight ® .
@ There can be more than one minimum spanning tree in a graph ..

(consider a graph with identical weight edges) o . °
@ Minimum spanning trees are useful in constructing networks, by ‘e o

describing the way to connect a set of sites using the smallest total
amount of wire

Why Minimum Spanning Trees

@ The minimum spanning tree problem has a long history — the first
algorithm dates back to at least 1926!
@ Minimum spanning trees are taught in algorithms courses since
@ it arises in many applications
@ it gives an example where greedy algorithms always give the best
answer
© Clever data structures are necessary to make it work efficiently
@ In greedy algorithms, we decide what to do next by selecting the best
local option from all available choices, without regard to the global
structure.

Prim’s algorithm

@ During execution each vertex v is either in the tree, fringe (meaning
there exists an edge from a tree vertex to v) or unseen (meaning v is
more than one edge away).

def Prim-MST(G):
Select an arbitrary vertex s to start the tree from.
While (there are still non-tree vertices)
Select the edge of minimum weight between
a tree and nontree vertex.
Add the selected edge and vertex to the
minimum spanning tree.

Prim’'s algorithm

o If G is connected, every vertex will appear in the minimum spanning
tree. (If not, we can talk about a minimum spanning forest.)

@ Prims algorithm starts from one vertex and grows the rest of the tree
an edge at a time.

@ As a greedy algorithm, which edge should we pick? The cheapest edge
with which can grow the tree by one vertex without creating a cycle.

6/31

Example run of Prim’s algorithm

\/
AN

/\/

Correctness of Prim's algorithm Efficiency of Prim’s algorithm

e f
b
/ \ _ o Efficiency depends on the data structure we use to implement the
? g f algorithm
\c g ;7 @ Simplest approach is O(nm):

@ Loop through all vertices (O(n))
@ At each step, check edges and find the lowest-cost fringe edge that
@ Let's talk through a “proof” by contradiction finds an unseen vertex (O(n))
© Suppose there is a graph G where Prim’s alg. does not find the MST
@ If so, there must be a first edge (e, f) Prim adds so that the partial
tree cannot be extended to an MST
© But if (e,f) is not in MST(G), there must be a path in MST(G) from
e to f since the tree is connected. Suppose (d, g) is the first path edge.
W(e, f) > W(d,g) since (e,) is not in the MST
But W(d, g) > W(e,f) since we assume Prim made a mistake
Thus, by contradiction, Prim must find an MST

@ But we can do better (O(m + nlg n)) by using a priority queue to
select edges with lower weight

©00

9/31 10/31

Prim’s algorithm implementation Prim’'s algorithm implementation

from heapgq import heappop, heappush

def prim_mst(G, s):
V, T=1[].{} #V: vertices in MST, T: MST
Priority Queue (weight, edgel, edge2)
Q = [(0, None, s)]

a while Q:
7 G={ _, p, u = heappop(Q)#choose edge w/ smallest weight
"a':{'b":7,'d":5}, if u in V: continue #skip any vertices already in MST
3 'b':{'a’":7,'d":9,'c’:8,"e":7}, V.append (u)
5 b c '¢':{'b':8,'e":5}, #build MST structure
7 'd':{'a’:5,'b":9,"’e’:15, ' f":6}, if p is None:
'e':{'b":7,'c":5,'d":15,'f":8,'g":9}, pass
9 5 "fri{'d" :6,'e":8,'g":11}, elif p in T:
d 15 e 'g':{'e’:9, f 11} T[p].append(u)
} else:
6 9 Tlp]=[u]
8 for v, w in G[u].items(): #add new edges to fringe
£ 11 g heappush(Q, (w, u, v))

return T

>>> prim_mst(G, 'd’)

{'a’: ['b’], ¢’ ['e’], 'b': ['c’], 'e’': ['g’], 'd’: ['a’, 'f']}

11/31 12 /31

Output from Prim’s algorithm implementation Exercise: Compute Prim’s algorithm starting from a
(number edges by time added)

a
\
5 i 5
/ \ / . ’
b f
\\\\\\\\E\\\\\\ /////// \\\\\\ 5 9 c 3
/////// \\\\\\\ '
a ! 4 @
12
>>> prim_mst(G,’d’)
{)ai: [}b)]’ 7b7: [Ie)], 7e): [,C’, 7g)],)d}: [)a),)f)]}
13/31 14 /31
Kruskal's algorithm Example run of Kruskal's algorithm

@ Instead of building the MST by incrementally adding vertices, we can
incrementally add the smallest edges to the MST so long as they
don't create a cycle

def Kruskal-MST(G):

\\\\\\\\Z\\\\\\
Put the edges in a list sorted by weight
count = 0
while (count<n-1) do
Get the next edge from the list (v,w) d
if (component(v) != component(w)) 6 / \
add (v,w) to MST
count+=1

merge component(v) and component (w)

15/31 16 /31

Correctness of Kruskal's algorithm

e f

v
N,
N\

i
c g&--h

o Let's talk through a “proof” by contradiction

© Suppose there is a graph G where Kruskal does not find the MST

@ If so, there must be a first edge (e, f) Kruskal adds so that the partial
tree cannot be extended to an MST

@ Inserting (e,) in MST(G) creates a cycle

@ Since e & f were in different components when (e, f) was inserted, at
least one edge (say (d,g)) in MST(G) must be evaluated after (e, f).

@ Since Kruskal adds edges by increasing weight, W(d, g) > W(e, f)

@ But then replacing (d, g) with (e, f) in the MST creates a smaller tree

@ Thus, by contradiction, Kruskal must find an MST

17/31

How fast is Kruskal's algorithm?

@ What is the simplest implementation?
e Sort the m edges in O(m Ig m) time.
o For each edge in order, test whether it creates a cycle in the forest we
have thus far built
o If a cycle is found, then discard, otherwise add to forest. With a
BFS/DFS, this can be done in O(n) time (since the tree has at most n
edges).
@ What is the running time?
e O(mn)
e Can we do better?
o Key is to increase the efficiency of testing component membership

19/31

Exercise: Compute Kruskal's algorithm (number edges by
time added)

5
8 4 2 2
59 c 3
/ \ !
a 7 4 e
12

18 /31

A necessary detour: set partition

@ A set partition is a partitioning of the elements of a universal set (i.e.,
the set containing all elements) into a collection of disjoint subsets

Consequently, each element must be in exactly one subset

We've already seen set partitions with bipartite graphs

@ We can represent the connected components of a graph as a set
partition

So we need to find an algorithm that can solve the set partition
problem efficiently: enter the union-find algorithm

20/31

Union-Find Algorithm Example of Union-Find

a
@ We need a data structure for maintaining sets which can test if two \
elements are in the same and merge two sets together. 5 b 8 c
@ These can be implemented by union and find operations, where \Z / v C[v] findk(v) R[]
o find (/) Return the label of the root of tree containing element i, by 915 5
walking up the parent pointers until there is no where to go. e a a a 2
o union(i,j): Link the root of one of the trees (say containing i) to the 6 / \9 b f a 0
root of the tree containing the other (say j) so £ind (/) now equals 811 C ¢ ¢ 1
£ind(j). f—"28 d a a 0
@ Ideally, we'd like the find to be logarithmic in the number of nodes Union-find trees e c o 0
and the union to take constant time a c g f a a 1
@ Why do we only link the root of the trees together in union and not / '\ ’\ E 8 g 0
all nodes in the tree?
f d e
b
21/31 22 /31
Example of Union-Find Implementing Union-Find
a
7 def findk (C, u): # Find component rep.
8 while C[u] != u: # Rep. would point to itself
5 b — ¢ . u= Clu]
N G) R return u
d 915 e > a a 2
6 9 b f 0 def unionk(C, R, u, v):
\ /811\ c ea ea 1 u, v = findk(C, u), findk(C, v)
f ——— & d a a 0 if R[u] > R[v]: # Union by rank
Union-find trees e c €a 0 C[v] =u
& g f a a 1 else
g g g 0 Clu] = v
/N N\ if R[u] = R[v]: #A tie: Move v up a level
f d e R[v] +=1

/

b

22 /31 23/31

Implementing Kruskal's algorithm

def kruskal (G):
E= [(G[u][v].,u,v) for u in G for v in G[u]]
T = set() # Empty partial solution
C = {u:u for u in G} # Component reps
R = {u:0 for u in G}

for _, u, v in sorted(E): # Edges, sorted by weight

if findk(C, u) != findk(C, v):
T.add((u, v)) # Different reps? Use
unionk (C, R, u, v) # Combine components
return T

24 /31

Clustering

Goal. Given a set U of n objects labeled p,, ..., p,, partition into clusters so
that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.
* Routing in mobile ad hoc networks.
« Document categorization for web search.
 Similarity searching in medical image databases
» Skycat: cluster 109 sky objects into stars, quasars, galaxies.

43

27 /31

4. GREEDY ALGORITHMS Il

v single-link clustering

\ JON KLEINBERG - EVA TARDOS

SECTION 4.7

26 /31
Clustering of maximum spacing
k-clustering. Divide objects into kK non-empty groups.
Distance function. Numeric value specifying "closeness" of two objects.
* d(p;.p) = 0iff p;=p; [identity of indiscernibles]
* dp,p) =0 [nonnegativity]
* dp;,p) = d(p;p) [symmetry]
Spacing. Min distance between any pair of points in different clusters.
Goal. Given an integer k, find a k-clustering of maximum spacing.
distance between two clusters ° distance between
two closest clusters
\ LN
LN
LN
LN
4-clustering 44
28/31

Greedy clustering algorithm Greedy clustering algorithm: analysis

“Well-known” algorithm in science literature for single-linkage k-clustering:
* Form a graph on the node set U, corresponding to n clusters.
» Find the closest pair of objects such that each object is in a different
cluster, and add an edge between them.

Theorem. Let C* denote the clustering C*, ..., C*, formed by deleting the
k-1 longest edges of an MST. Then, C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering Ci, ..., C,.

* Repeat n -k times until there are exactly k clusters. * The spacing of C* is the length d* of the (k- 1)st longest edge in MST.

¢ * Let p;and p; be in the same cluster in C*, say C*,, but different clusters
.:;1 (t 2.1... in C, say C, and C..
-~ ~
_(@\ Some edge (p,g) on p;—p; path in C*, spans two different clusters in C.
N ik * Edge (p, g) has length < d* since it wasn't deleted.
~
<. . % * Spacing of C is = d* since p and q are in different clusters. =
o~ M '/l (S /I C
- \\ I
~ ™ AN -
Key observation. This procedure is precisely Kruskal's algorithm
edges left after deleting
(except we stop when there are k connected components). k-1 longest edges
from a MST

Alternative. Find an MST and delete the k-1 longest edges.

45

30/31

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

e T R

skin Liver Lung BreastTumors Breast Normal Kidney Prostate Brain APL Ovary

Luminal Tumors Breast
Basal

gene |

gene n

ene expressed
Reference: Botstein & Brown group |9 P

W gene not expressed @

