Finding strongly-connected components

Tyler Moore
CSE 3353, SMU, Dallas, TX

Lecture 9

Strongly connected components

A **strongly connected component** is the maximal subset of a graph with a directed path between any two vertices.

Strong connectivity

Def. Nodes u and v are **mutually reachable** if there is a both path from u to v and also a path from v to u.

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf.

\Rightarrow Follows from definition.

\Leftarrow Path from u to v: concatenate $u \rightarrow s$ path with $s \rightarrow v$ path.

Path from v to u: concatenate $v \rightarrow s$ path with $s \rightarrow u$ path.

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^reverse.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.
Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem. [Tarjan 1972] Can find all strong components in $O(m + n)$ time.

Strongly connected components

A **strongly connected component** is the maximal subset of a graph with a directed path between any two vertices.

Is Wikipedia a strongly connected graph?

Strongly connected components

Are supernodes in a DAG?
Strongly connected components

What if we transpose all edges?

SCCs don't change

Kosaraju’s algorithm for finding SCCs

1. Get a topological sort of all vertices
2. Transpose the graph (reverse all edges)
3. Traverse the graph in topologically sorted order, adding an SCC each time a dead end is reached.

Kosaraju’s Algorithm for Finding Strongly Connected Components

1. Get a topological sort of all vertices
 - topsort: [a, b, e, f, g, c, d, h, i]
 - seen: {}
 - sccs: []
2. Reverse all edges
 - topsort: [a, b, e, f, g, c, d, h, i]
 - seen: {}
 - sccs: []
Kosaraju’s Algorithm for Finding Strongly Connected Components

3. Traverse the graph in topologically sorted order, adding an SCC each time a dead end is reached.

- topsort: [a, b, e, f, g, c, d, h, i]
- seen: {a,b,c,d}
- sccs: [{a,b,c,d}]

1st SCC

- topsort: [a, b, e, f, g, c, d, h, i]
- seen: {a,b,c,d,e,g,f}
- sccs: [{a,b,c,d}, {e,g,f}]

2nd SCC

- topsort: [a, b, e, f, g, c, d, h, i]
- seen: {a,b,c,d,e,g,f}
- sccs: [{a,b,c,d}, {e,g,f}]

3rd SCC

Code for Kosaraju’s SCC Algorithm

```python
def tr(G):
    GT = {}
    for u in G:
        GT[u] = set()
    for u in G:
        for v in G[u]:
            GT[v].add(u)
    return GT

def scc(G):
    GT = tr(G)
    sccs, seen = [], set()
    for u in iter_dfs_topsort(G):  # DFS starting points
        if u in seen: continue      # Ignore covered nodes
        C = walk(GT, u, seen)       # Don’t go “backward” (seen)
        seen.update(C)             # We’ve now seen C
        sccs.append(C)             # Another SCC found
    print(sccs)
```

Exercise 1: Apply Kosaraju’s SCC Algorithm

Graph G

- What is the topological sort of G? Let’s make the DFS tree starting from a
- What are the strongly connected components?

Graph G

$\begin{array}{c}
 a & \rightarrow & c & \rightarrow & e \\
 \downarrow & & \downarrow & & \downarrow \\
 b & \rightarrow & d & \leftarrow & f \\
\end{array}$

Exercise 2: Apply Kosaraju’s SCC Algorithm

Graph G

- What is the topological sort of G? Let’s make the DFS tree starting from a
- What are the strongly connected components?

Graph G

$\begin{array}{c}
 a & \rightarrow & d & \rightarrow & g \\
 \uparrow & & \uparrow & & \uparrow \\
 b & \leftarrow & e & \rightarrow & h \\
 \downarrow & & \downarrow & & \downarrow \\
 c & \leftarrow & f & \rightarrow & i \\
\end{array}$

Transpose(G)

$\begin{array}{c}
 d & \leftarrow & a & \leftarrow & e \\
 \downarrow & & \downarrow & & \downarrow \\
 h & \rightarrow & b & \rightarrow & f \\
 \downarrow & & \downarrow & & \downarrow \\
 i & \rightarrow & c & \rightarrow & g \\
\end{array}$