The Vertex coloring problem and bipartite graphs J

Tyler Moore
CSE 3353, SMU, Dallas, TX

Lecture 8

Some slides created by or adapted from Dr. Kevin Wayne. For more information see
http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Graph-coloring of registers adapted from Stanford’'s CS143

(Aiken, Treichler).

Vertex-coloring problem

@ The vertex-coloring problem seeks to assign a label (aka color) to
each vertex of a graph such that no edge links any two vertices of the
same color

@ Trivial solution: assign each vertex a different color

@ However, goal is usually to use as few colors as possible

Vertex-coloring problem

Applications of the vertex-coloring problem

@ Apart from working at National Geographic, when might you
encounter a vertex-coloring problem?

@ Vertex-coloring problems arise in scheduling problems, where access
to shared resources must be coordinated

e Example: register allocation by compilers

o Variables are used for fixed timespan (after initialization, before final
use)

e Two variables with intersecting lifespans can’t be put in the same
register

o We can build a graph with variables assigned to vertices and edges
drawn between vertices if the variables’ lifespan intersects

e Color the graph, and assign variables to the same register if their
vertices have the same color

N

Vertex-coloring problem special case: two colors o
Testing bipartiteness

Many graph problems become:
@ A bipartite graph is an undirected graph U V4 « Easier if the underlying graph is bipartite (matching).
whose vertices can be divided into disjoint » Tractable if the underlying graph is bipartite (independent set).
sets U and V such that every edge -
connects a vertex in U to one in V. > Before attempting to design an algorithm, we need to understand structure

. of bipartite graphs.
@ Bipartite graphs arise in matching P arap

problems: matching workers to jobs, |
matching kidney donors with recipients, -
finding heterosexual mates

4 AN

@ If we can color a graph’s vertices using just

two colors, then we have a bipartite graph - .\. /
@ Problem: given a graph, find its o)
two-coloring or report that a two-coloring is © O
not possible a bipartite graph G another drawing of G
27
5/32 6/32
An obstruction to bipartiteness Bipartite graphs
Lemma. If a graph G is bipartite, it cannot contain an odd length cycle. Lemma. Let G be a connected graph, and let L,, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
Pf. Not possible to 2-color the odd cycle, let alone G. (i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

bipartite not bipartite
(2-colorable) (not 2-colorable)
I L, L3 L Lo L3

Case (i) Case (ii)

~
o
w
o

Breadth-first search

Property. Let 7 be a BFS tree of G=(V,E), and let (x,y) be an edge of G.

Then, the level of x and y differ by at most 1.

(@)

Bipartite graphs

Lo

L

L,

Ly

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf.
* Suppose (x,y) is an edge with x, y in same level L,

(i)

Let z = Ica(x, y) = lowest common ancestor.

Let L, be level containing z.

Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.
+ (j—i) + (j—i), whichis odd. =
Lv_/ H_/

path from path from

Its length is

1
-

(X, y)

ytoz

ztox

z =lca(x, y)

11/3

IS}

Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
» Suppose no edge joins two nodes in adjacent layers.
* By previous lemma, this implies all edges join nodes on same level.
 Bipartition: red = nodes on odd levels, blue = nodes on even levels.

L L L

Case (i)

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

<«—— 5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

10/32

12/32

Two-coloring algorithm

© Suppose there are two colors: blue and red.
@ Color the first vertex blue.

© Do a breadth-first traversal. For each newly-discovered node, color it
the opposite of the parent (i.e., red if parent is blue)

@ If the child node has already been discovered, check if the colors are
the same as the parent. If so, then the graph isn’t bipartite.

@ If the traversal completes without any conflicting colors, then the
graph is bipartite.

13/32

Two-coloring algorithm example 2

Undirected Graph Breadth-First Search Tree

CONFLICT

15/32

Two-coloring algorithm example 1

Undirected Graph

Exercise: Check for bipartness

Breadth-First Search Tree

14 /32

16 /32

* Consider the following the following IL:

Global Optimization

x := 3
if b > 0 goto L1
y =z +w
goto L2
L1l
y := X
L2
a =2 * x
if a < b goto L1
ret y
Sean Treichler CS143 — Summer 2014 — Lecture 13
RIG Example
{b, w, z}
x := 3
b>0
{ba w, X, V \‘/_{{)a X}
y :=z +w y := x
DX Ve
{a, b, x, v} 4= 7 2 * x

Sean Treichler

>
a<b xy
1

ret y
0

CS143 — Summer 2014 — Lecture 13

=~
~

Register Interference Graph

e Use liveness analysis to compute a register
interference graph (RIG)

e Each variable is a node in the RIG

* An edge exists between two nodes (variables) if:
— at ANY point in program, both variables are live

* Directly connected nodes are variables that
cannot share a register

Sean Treichler CS143 — Summer 2014 — Lecture 13

Graph Coloring

* A coloring of a graph is a assignment of colors to
nodes:

— such that node that share an edge have different
colors

* A k-coloring is a coloring that uses at most k
different colors

* A k-colorable graph is a graph for which there
exists at least one k-coloring

Sean Treichler CS143 — Summer 2014 — Lecture 13

Register Allocation via Coloring Our Heuristic

* A k-coloring of a RIG is a valid register * Start with full RIG

allocation for k registers: « While graph is not empty:

— Each color is a register — Select a node with minimum number of edges
— Variables with the same color are never live at the — Remove node from graph, place on stack
same time

* While stack is not empty:
— Pop node from stack, put back in graph

. Graph coIoring is a hard problem (NP—hard) — Add back any edges to other nodes in graph
L. — Pick a color for the node that doesn’t match any neighbor
— Have to use heuristics * Pick a new color if necessary
Example Coloring Example Coloring
Graph: Stack: Graph: Stack:
080 -
< w
OiNavey .
N\ z

{

046 *‘

Graph:

Sean Treichler

Graph:

Sean Treichler

Example Coloring

CS143 — Summer 2014 — Lecture 13

Stack:

b

Example Coloring

CS143 — Summer 2014 — Lecture 13

Stack:

Example Coloring

Graph: Stack:

58 Sean Treichler CS143 — Summer 2014 - Lecture 13 59
25/32

Example Coloring

Graph: Stack:

60 Sean Treichler CS143 — Summer 2014 - Lecture 13 61
27 /32

Example Coloring

Graph: Stack:

Sean Treichler C€S143 — Summer 2014 - Lecture 13 62
29 /32

Example Coloring

Graph: Code:

3

> 0 goto L1
zZ +w

goto L2

'-l
Hh
n o

y 1= x

a =2 * x
if < b goto 1Ll
4 z ret y

V]

Sean Treichler C€S143 — Summer 2014 - Lecture 13 65
31/32

Graph:

Example Coloring

Sean Treichler

Graph:

CS143 — Summer 2014 - Lecture 13

Stack:

Example Coloring

r3 :=

if rl

vl =

goto L
Ll:

Sean Treichler

vl =
L2:

r2 :=

if r2
z ret =4

CS143 — Summer 2014 — Lecture 13

Code:

3

> 0 goto L1
w4 + r2

2

r3

2 * r3
< rl goto L1

63
30/32

66
32/32

