BFS/DFS Applications

BFS and DFS applications

Tyler Moore

CSE 3353, SMU, Dallas, TX

Lecture 7

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

 http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t ?
s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t ?

Applications.

- Friendster.
- Maze traversal.
- Kevin Bacon number
- Fewest number of hops in a communication network.
- Shortest path between two nodes in a graph
- Topological sorting
- Finding connected components

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $L_{0}=\{s\}$.
- $L_{1}=$ all neighbors of L_{0}.
- $L_{2}=$ all nodes that do not belong to L_{0} or L_{1}, and that have an edge to a node in L_{1}.
- $L_{i+1}=$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_{i}.

Theorem. For each i, L_{i} consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth-first search

Property. Let T be a BFS tree of $G=(V, E)$, and let (x, y) be an edge of G.
Then, the level of x and y differ by at most 1 .

(a)

(b)

(c)
L_{0}
L_{1}
L_{2}
L_{3}
L_{3}
19

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in $O(m+n)$ time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $\mathrm{O}\left(n^{2}\right)$ running time:
- at most n lists $L[i]$
- each node occurs on at most one list; for loop runs $\leq n$ times
- when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge
- Actually runs in $O(m+n)$ time:
- when we consider node u, there are degree (u) incident edges (u, v)
- total time processing edges is $\Sigma_{u \in V}$ degree $(u)=2 m$. •
\uparrow
each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

20

Application of topological sorting

Figure: Directed acyclic graph for clothing dependencies

Figure: Topological sort of clothes

Precedence constraints

Precedence constraints. Edge $\left(v_{i}, v_{j}\right)$ means task v_{i} must occur before v_{j}.

Applications.

- Course prerequisite graph: course v_{i} must be taken before v_{j}.
- Compilation: module v_{i} must be compiled before v_{j}. Pipeline of computing jobs: output of job v_{i} needed to determine input of job v_{j}.

Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

- Suppose that G is a DAG and every node has at least one entering edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u, v) we can walk backward to u.
- Then, since u has at least one entering edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to $w . C$ is a cycle. -

Directed acyclic graphs

Examples of Induction-Based Topological Sorting

Lemma. If G is a DAG, then G has a topological ordering.
Pf. [by induction on n]

- Base case: true if $n=1$.
- Given DAG on $n>1$ nodes, find a node v with no entering edges.
- $G-\{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G-\{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G-\{v\}$
- in topological order. This is valid since v has no entering edges. -

To compute a topological ordering of G :
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological sorting on DAGs

```
def topsort(G):
        count = dict((u, 0) for u in G)#The in-degree for each node
    for u in G:
        for v in G[u]:
            count[v] += 1 #Count every in-edge
    Q = [u for u in G if count[u] = 0] # Valid initial nodes
    S = [] #The result
    while Q: #While we have start nodes...
        u = Q.pop() #Pick one
        S.append(u) #Use it as first of the rest
        for v in G[u]:
            count[v] -= 1 #"Uncount" its out-edges
            if count[v] = 0:#New valid start nodes?
                    Q.append(v) #Deal with them next
    return S
return S
```


Directed Acyclic Graph

Discovered: $\quad g f e d a c b$
Processed: defcbag

Depth-First Search Tree

DFS Trees: all descendants of a node u are processed after u is discovered but before u is processed

How can we tell if one node is a descendant of another?

Undirected Graph

$\begin{array}{ll}\text { Discovered: } & a b c d e f \\ \text { Processed: } & e d c b f a\end{array}$

Depth-First Search Tree

- Answer: with depth-first timestamps!
- After we create a graph in a depth-first traversal, it would be nice to be able to verify if node A is encountered before node B, etc.
- We add one timestamp for when a node is discovered (during preorder processing) and another timestamp for when a node is processed (during postorder processing)

Code for depth-first timestamps

```
def dfs(G, s, d, f, S=None, t=0):
```

 if \(S\) is None: \(S=\) set ()\# Initialize the history
 \(\mathrm{d}[\mathrm{s}]=\mathrm{t} ; \mathrm{t}+=1 \quad\) \# Set discover time
 S.add(s)
 for \(u\) in \(G[s]\) :
 \# We've visited s
 \# Explore neighbors
 if \(u\) in \(S\) : continue\# Already visited. Skip
 \(\mathrm{t}=\mathrm{dfs}(\mathrm{G}, \mathrm{u}, \mathrm{d}, \mathrm{f}, \mathrm{S}, \mathrm{t}) \quad \#\) Recurse;
 \(\mathrm{f}[\mathrm{s}]=\mathrm{t} ; \mathrm{t}+=1 \quad\) \# Set finish time
 return t \# Return timestamp
    ```
\(\ggg f=\{ \}\)
\(\ggg d=\{ \}\)
\(\gg\)
```



```
\(\xrightarrow[12]{12>d}\)
```



```
\{'a': \(\left.11, c^{\prime} c^{\prime}: 7, b^{\prime}: 8, e^{\prime}: 5, d^{\prime}: 6, f^{\prime}: 10\right\}\)
```

Using depth-first timestamps for topological sorting

```
>> f={}
>> d={}
>> dfs(DAG,'g',d,f)
14
updatet otpimcertamp[k for k,v in sorted(f.iteritems(),
>>> topsort.reverse()
>> topsort
['g', 'a', 'b', 'c', 'f', 'e', 'd']
```


Exercise: DFS-Based Topological Sorting

Connected Components

- A connected component of an undirected graph is a maximal set of vertices such that there is a path between every pair of vertices

- Exercise: Explain in English how you could find all connected components of a graph using breadth-first search.

Code to find connected components

```
def find_components(G):
    vertices = G.keys()
    u = vertices[0]
    components=[]
    S =set()
    while True
        cc = list(bfs(G,u)) #do BFS from vertex
        S.update(cc)
        #update discovered
        components.append(cc)#update component list
        #remove component's vertices
            vertices.remove(v)#from set to check
        if not vertices: break
        u = vertices[0] #pick the next undiscovered vertex
    return components
>>> find_components(G)
>>> find_components(G)
```


Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels
- Blob: connected component of lime pixels.

Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

