BFS and DFS applications

Tyler Moore

CSE 3353, SMU, Dallas, TX

Lecture 7

Some slides created by or adapted from Dr. Kevin Wayne. For more information see
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

BFS/DFS Applications

- Shortest path between two nodes in a graph
- Topological sorting
- Finding connected components

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.
- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one “layer” at a time.

BFS algorithm.
- \(L_0 = \{ s \} \).
- \(L_i = \) all neighbors of \(L_{i-1} \).
- \(L_2 = \) all nodes that do not belong to \(L_0 \) or \(L_1 \), and that have an edge to a node in \(L_1 \).
- \(L_{i+1} = \) all nodes that do not belong to an earlier layer, and that have an edge to a node in \(L_i \).

Theorem. For each i, \(L_i \) consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Breadth-first search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then, the level of x and y differ by at most 1.

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.
- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge
- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{degree}(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{v \in \text{neighbors}(u)} \text{degree}(v) = 2m$.

Directed acyclic graphs

Def. A **DAG** is a directed graph that contains no directed cycles.

Def. A **topological order** of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

Application of topological sorting

Figure: Directed acyclic graph for clothing dependencies

Figure: Topological sort of clothes
Precedence constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.
- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\).
- Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).

Directed acyclic graphs

Lemma. If \(G\) has a topological order, then \(G\) is a DAG.

Pf. [by contradiction]
- Suppose that \(G\) has a topological order \(v_1, v_2, ..., v_n\) and that \(G\) also has a directed cycle \(C\). Let’s see what happens.
- Let \(v_i\) be the lowest-indexed node in \(C\), and let \(v_j\) be the node just before \(v_i\), thus \((v_j, v_i)\) is an edge.
- By our choice of \(i\), we have \(i < j\).
- On the other hand, since \((v_j, v_i)\) is an edge and \(v_1, v_2, ..., v_n\) is a topological order, we must have \(j < i\), a contradiction. ▪

Directed acyclic graphs

Lemma. If \(G\) is a DAG, then \(G\) has a node with no entering edges.

Pf. [by contradiction]
- Suppose that \(G\) is a DAG and every node has at least one entering edge. Let’s see what happens.
- Pick any node \(v\), and begin following edges backward from \(v\). Since \(v\) has at least one entering edge \((u, v)\) we can walk backward to \(u\).
- Then, since \(u\) has at least one entering edge \((x, u)\), we can walk backward to \(x\).
- Repeat until we visit a node, say \(w\), twice.
- Let \(C\) denote the sequence of nodes encountered between successive visits to \(w\). \(C\) is a cycle. ▪
Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]

- **Base case:** true if $n = 1$.
- **Given DAG on $n > 1$ nodes, find a node v with no entering edges.**
- $G \setminus \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \setminus \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \setminus \{v\}$ in topological order. This is valid since v has no entering edges.

To compute a topological ordering of G:

1. Find a node v with no incoming edges and order it first.
2. Delete v from G.
3. Recursively compute a topological ordering of $G \setminus \{v\}$ and append this order after v.

Python code for induction-based topsort

```python
def topsort(G):
    count = dict((u, 0) for u in G)# The in-degree for each node
    for u in G:
        for v in G[u]:
            count[v] += 1 # Count every in-edge
    Q = [u for u in G if count[u] == 0] # Valid initial nodes
    S = [] # The result
    while Q:
        u = Q.pop() # Pick one
        S.append(u) # Use it as first of the rest
        for v in G[u]:
            count[v] -= 1 # Uncount its out-edges
            if count[v] == 0:
                Q.append(v) # Deal with them next
    return S
```

Topological sorting on DAGs

Directed Acyclic Graph

```
Directed Acyclic Graph
```

Depth-First Search Tree

```
Depth-First Search Tree
```

Discovered: $gfedacb$

Processed: $defcbag$

Topological sort: $gabcfed$
DFS Trees: all descendants of a node \(u \) are processed after \(u \) is discovered but before \(u \) is processed

Undirected Graph

![Graph Diagram]

Depth-First Search Tree

![Tree Diagram]

Discovered: \(a \ b \ c \ d \ e \ f \)
Processed: \(e \ d \ c \ b \ f \ a \)

How can we tell if one node is a descendant of another?

- Answer: with depth-first timestamps!
- After we create a graph in a depth-first traversal, it would be nice to be able to verify if node \(A \) is encountered before node \(B \), etc.
- We add one timestamp for when a node is discovered (during preorder processing) and another timestamp for when a node is processed (during postorder processing)

Code for depth-first timestamps

```python
def dfs(G, s, d, f, S=None, t=0):
    if S is None: S = set()  # Initialize the history
    d[s] = t; t += 1         # Set discover time
    S.add(s)                 # We've visited s
    for u in G[s]:          # Explore neighbors
        if u in S: continue  # Already visited. Skip
        t = dfs(G, u, d, f, S, t)  # Recurse; update timestamp
        f[s] = t; t += 1       # Set finish time
    return t                 # Return timestamp
```

Using depth-first timestamps for topological sorting

```python
>>> f={}  
>>> d={}  
>>> dfs(DAG, 'g', d, f)  
>>> topsort = [k for k, v in sorted(f.items(), key=lambda(k, v): v)]  
>>> topsort.reverse()  
>>> topsort
['g', 'a', 'b', 'c', 'f', 'e', 'd']
```
Exercise: DFS-Based Topological Sorting

Connected Components

- A connected component of an undirected graph is a maximal set of vertices such that there is a path between every pair of vertices.

![Graph Diagram]

- **Exercise**: Explain in English how you could find all connected components of a graph using breadth-first search.

```python
def find_components(G):
    vertices = G.keys()
    u = vertices[0]  # pick starting vertex
    components = []  # list of components
    S = set()  # discovered vertices
    while True:
        cc = list(bfs(G, u))  # do BFS from vertex
        S.update(cc)  # update discovered
        components.append(cc)  # update component list
        for v in cc:
            vertices.remove(v)  # remove component's vertices from set to check
        if not vertices: break
        u = vertices[0]  # pick the next undiscovered vertex
    return components
```

```python
>>> find_components(G)
[['a', 'g', 'f'], ['c', 'e', 'd'], ['b']]
```
Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
- **Node:** pixel.
- **Edge:** two neighboring lime pixels.
- **Blob:** connected component of lime pixels.

recolor lime green blob to blue