BFS and DFS applications

Tyler Moore
CSE 3353, SMU, Dallas, TX

Lecture 7

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Connectivity

s-t connectivity problem. Given two node s and 1, is there a path between s
and ¢?

s-t shortest path problem. Given two node s and ¢, what is the length of the
shortest path between s and ¢?

Applications.
* Friendster.
* Maze traversal.
» Kevin Bacon number.
* Fewest number of hops in a communication network.

BFS/DFS Applications

@ Shortest path between two nodes in a graph
@ Topological sorting

@ Finding connected components

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm.
* Ly={s}.
» L, =all neighbors of L,.
» L,=all nodes that do not belong to L, or L,, and that have an edge to a
node in L,.
* L, = all nodes that do not belong to an earlier layer, and that have an
edge to a node in L;.

Theorem. For each i, L, consists of all nodes at distance exactly i
from s. There is a path from s to ¢ iff t appears in some layer.

Breadth-first search

Property. Let T be a BFS tree of G=(V, E), and let (x, y) be an edge of G.
Then, the level of x and y differ by at most 1.

L
L,

L

(@)

5/25
Directed acyclic graphs
Def. A DAG is a directed graph that contains no directed cycles.
Def. A topological order of a directed graph G = (V,E) is an ordering of its
nodes as v, v,, ..., v, so that for every edge (v;, v) we have i<j.
) ®@
a DAG a topological ordering
45
7/25

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Pf.
* Easy to prove O(n2) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < times
- when we consider node u, there are <n incident edges (u, v),
and we spend O(1) processing each edge

* Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is =, degree(u) = 2m. =

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

Application of topological sorting

Figure : Directed acyclic graph for clothing dependencies

Figure : Topological sort of clothes

6/25

8/25

Precedence constraints

Precedence constraints. Edge (v;,v;) means task v; must occur before v;.

Applications.

+ Course prerequisite graph: course v, must be taken before v;.
+ Compilation: module v; must be compiled before v,. Pipeline of
computing jobs: output of job v, needed to determine input of job v;.

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q

Q.

. Does every DAG have a topological ordering?

If so, how do we compute one?

48

11/25

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf.

[by contradiction]

Suppose that G has a topological order v, v,, ..., v, and that G also has a
directed cycle C. Let's see what happens.

Let v; be the lowest-indexed node in C, and let v; be the node just
before v; thus (v, v) is an edge.

By our choice of i, we have i <j.

On the other hand, since (v, v) is an edge and v, v,, ..., v, is a topological
order, we must have j<i, a contradiction. =

@O@@@O@

the supposed topological order: v, ..., v,

Directed acyclic graphs

Lemma. If Gis a DAG, then G has a node with no entering edges.

Pf.

[by contradiction]

Suppose that G is a DAG and every node has at least one entering edge.
Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u,v) we can walk backward to u.

Then, since u has at least one entering edge (x,u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between successive
visits to w. Cis a cycle. =

Directed acyclic graphs Examples of Induction-Based Topological Sorting

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n] ﬂi'
* Base case: true if n=1.

* Given DAG on n > 1 nodes, find a node v with no entering edges.

* G-{v}is aDAG, since deleting v cannot create cycles.

* By inductive hypothesis, G- { v} has a topological ordering.

* Place v first in topological ordering; then append nodes of G- { v}
* in topological order. This is valid since v has no entering edges. =

To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first
Delete v from G %{

Recursively compute a topological ordering of G—{v}
and append this order after v

13 /25 14 /25

Python code for induction-based topsort Topological sorting on DAGs

def topsort(G): Directed Acyclic Graph Depth-First Search Tree
count = dict((u, 0) for u in G)#The in—degree for each node

for u in G:
for v in G[u]:

count[v] +=1 #Count every in—edge
Q = [u for u in G if count[u] = 0] # Valid initial nodes Q 0

S =[] #The result

while Q: #While we have start nodes...
u=Q.pop() #Pick one a e e
S.append(u) #Use it as first of the rest ’

for v in G[u]:
count[v] —=1 #' Uncount” its out—edges e e

if count[v] = 0:#New valid start nodes?
Q.append(v) #Deal with them next

Discovered:
return S Processed: defchag Topological sort: gabcfed

15/25 16 /25

DFS Trees: all descendants of a node u are processed after
u is discovered but before u is processed

Undirected Graph Depth-First Search Tree

!
/ C !
a r() o/
i !
| /
e} w /
! /
' /
\ /
\ 7/

Discovered:
Processed: edchfa @

17/25

Code for depth-first timestamps

def dfs(G, s, d, f, S=None, t=0):
if S is None: S = set()# Initialize the history
dis] =t; t+=1 # Set discover time
S.add(s) # We've visited s
for u in G[s]: # Explore neighbors
if uin S: continue# Already visited. Skip
t = dfs(G, u, d, f, S, t)
fls] =t; t+=1 # Set finish time
return t # Return timestamp

>>> f={}
>>> d={}
>>> dfs(N,'a’.,d, f)

19/25

How can we tell if one node is a descendant of another?

@ Answer: with depth-first timestamps!

o After we create a graph in a depth-first traversal, it would be nice to
be able to verify if node A is encountered before node B, etc.

@ We add one timestamp for when a node is discovered (during preorder
processing) and another timestamp for when a node is processed
(during postorder processing)

18 /25

Using depth-first timestamps for topological sorting

>>> f={}

>>> d={}

>>> dfs (DAG, 'g’,d, f)
14

Recurse; uptatetopsestamplk for k,v in sorted(f.iteritems (),

key=lambda(k,v): v)]
>>> topsort.reverse ()

>>> topsort
[lgv, 1a1, vbll lcv, 1f1, veI' 1dv]

20/25

Exercise: DFS-Based Topological Sorting Connected Components

@ A connected component of an undirected graph is a maximal set of
vertices such that there is a path between every pair of vertices

e Exercise: Explain in English how you could find all connected
components of a graph using breadth-first search.

21/25 24 /25

Code to find connected components Flood Al

Flood fill. Given lime green pixel in an image, change color of entire blob of

def find_components(G): neighboring lime pixels to blue.
vertices = G. keys () * Node: pixel.
u = vertices [0] #pick starting vertex + Edge: two neighboring lime pixels.
components =[] #list of components] .
S =set () #discovered vertices + Blob: connected component of lime pixels.
while True: recolor lime green blob to blue
cc = list(bfs(G,u)) #do BFS from vertex
S.update(cc) #update discovered)
components.append(cc)#update component list — —~
for v in cc: #remove component’'s vertices
vertices.remove(v)#from set to check IR RIRIG
if not vertices: break 5T 5T
u = vertices [0] #pick the next undiscovered vertex
return components 00 O1O[C
o o e o o
>>> find_components(G) ® o 0 0 0 0 0

[ar g’y "F1, [e’ er, td] b

26 /25 24 /25

Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of
neighboring lime pixels to blue.

* Node: pixel.

* Edge: two neighboring lime pixels.

« Blob: connected component of lime pixels.
recolor lime green blob to blue

eo Tux Paint

'/ =) o

et stamp RainbowSparkes
® 6 6 o o o o

o1

{ires Snapes Wit | Fip
e o e o

Abc &=

Text \iagle o | Blocks
s ° o e o o

Uido) R Reaaed e
e o e o o

Eraser Now Chalk ' Drip
@ ® 6 6 o o o o

on || Gave Thick | Thin

#Z‘ Ve > S

S
€ood™ ..
w Click in the picture to fill that area with color.

Fil

