
BFS and DFS applications

Tyler Moore

CSE 3353, SMU, Dallas, TX

Lecture 7

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

BFS/DFS Applications

Shortest path between two nodes in a graph

Topological sorting

Finding connected components

2 / 25

17

������������

s-t connectivity problem. Given two node � and �, is there a path between �

and ��?

s-t shortest path problem. Given two node � and �, what is the length of the

shortest path between � and ��?

Applications.

�Friendster.

�Maze traversal.

�Kevin Bacon number.

�Fewest number of hops in a communication network.

3 / 25

18

�������������������

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

�����������.

����� all neighbors of ��.

����� all nodes that do not belong to �� or ��, and that have an edge to a

node in ��.

������� all nodes that do not belong to an earlier layer, and that have an

edge to a node in ��.

Theorem. For each �, �� consists of all nodes at distance exactly �

from �. There is a path from � to � iff � appears in some layer.

s L1 L2 Ln–1

4 / 25

19

�������������������

Property. Let � be a BFS tree of ����������, and let ������ be an edge of �.

Then, the level of � and � differ by at most 1.

L0

L1

L2

L3

5 / 25

20

������������������������������

Theorem. The above implementation of BFS runs in �������� time if the

graph is given by its adjacency representation.

Pf.

�Easy to prove ����� running time:

� at most � lists ����

� each node occurs on at most one list; for loop runs ≤�� times

� when we consider node �, there are�≤�� incident edges ������,

and we spend ���� processing each edge

�Actually runs in �������� time:

� when we consider node �, there are ��������� incident edges ������

� total time processing edges is Σ�∈�������������������. ▪

each edge (u, v) is counted exactly twice

in sum: once in degree(u) and once in degree(v)

6 / 25

45

�����������������������

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph ���������� is an ordering of its

nodes as ������������� so that for every edge �������� we have �����.

����� ����������������������

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

7 / 25

Application of topological sorting

Figure : Directed acyclic graph for clothing dependencies

Figure : Topological sort of clothes
8 / 25

46

����������������������

Precedence constraints. Edge �������� means task �� must occur before ��.

Applications.

�Course prerequisite graph: course �� must be taken before ��.

�Compilation: module �� must be compiled before ��. Pipeline of

computing jobs: output of job �� needed to determine input of job ��.

9 / 25

47

�����������������������

Lemma. If � has a topological order, then � is a DAG.

Pf. [by contradiction]

�Suppose that � has a topological order ������������� and that � also has a

directed cycle �. Let's see what happens.

�Let �� be the lowest-indexed node in �, and let �� be the node just

before ��; thus �������� is an edge.

�By our choice of �, we have �����.

�On the other hand, since �������� is an edge and ������������� is a topological

order, we must have �����, a contradiction. ▪

v1 vi vj vn

��

the directed cycle C

10 / 25

48

�����������������������

Lemma. If � has a topological order, then � is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

11 / 25

49

�����������������������

Lemma. If � is a DAG, then � has a node with no entering edges.

Pf. [by contradiction]

�Suppose that � is a DAG and every node has at least one entering edge.

Let's see what happens.

�Pick any node �, and begin following edges backward from �. Since �

has at least one entering edge ������ we can walk backward to �.

�Then, since � has at least one entering edge ������, we can walk

backward to �.

�Repeat until we visit a node, say �, twice.

�Let � denote the sequence of nodes encountered between successive

visits to �. � is a cycle. ▪

w x u v

12 / 25

50

�����������������������

Lemma. If � is a DAG, then � has a topological ordering.

Pf. [by induction on �]

�Base case: true if �����.

�Given DAG on ������ nodes, find a node � with no entering edges.

���������� is a DAG, since deleting � cannot create cycles.

�By inductive hypothesis, ��������� has a topological ordering.

�Place � first in topological ordering; then append nodes of ���������

�in topological order. This is valid since � has no entering edges. ▪

���

v

13 / 25

Examples of Induction-Based Topological Sorting

14 / 25

Python code for induction-based topsort

def t o p s o r t (G) :
count = d i c t ((u , 0) f o r u i n G)#The in−deg r ee f o r each node
f o r u i n G:

f o r v i n G[u] :
count [v] += 1 #Count e v e r y in−edge

Q = [u f o r u i n G i f count [u] == 0] # Va l i d i n i t i a l nodes
S = [] #The r e s u l t
whi le Q: #While we have s t a r t nodes . . .

u = Q. pop () #Pick one
S . append (u) #Use i t as f i r s t o f the r e s t
f o r v i n G[u] :

count [v] −= 1 #”Uncount” i t s out−edges
i f count [v] == 0 :#New v a l i d s t a r t nodes ?

Q. append (v) #Deal w i th them next
return S

15 / 25

Topological sorting on DAGs

Directed Acyclic Graph

a

b

c

d

e

fg

Discovered:

g

g

f

f

e

e

d

d

a

a

c

c

b

b
Processed:

d

d

e

e

f

f

c

c

b

b

a

a

g

g

Depth-First Search Tree

g

f

e

d

a

c b

1

2
3

4
5

8

6

7 10

11

Topological sort: g a b c f e d

16 / 25

DFS Trees: all descendants of a node u are processed after
u is discovered but before u is processed

Undirected Graph

a

b

c

d

ef

Discovered:

a

a

b

b

c

c

d

d

e

e

f

f
Processed:

e

e

d

d

c

c

b

b

f

f

a

a

Depth-First Search Tree

a

b

c

d

e

f

1

2
3

4

10

5

6
17 / 25

How can we tell if one node is a descendant of another?

Answer: with depth-first timestamps!

After we create a graph in a depth-first traversal, it would be nice to
be able to verify if node A is encountered before node B , etc.

We add one timestamp for when a node is discovered (during preorder
processing) and another timestamp for when a node is processed
(during postorder processing)

18 / 25

Code for depth-first timestamps

def d f s (G, s , d , f , S=None , t =0):
i f S i s None : S = s e t ()# I n i t i a l i z e the h i s t o r y
d [s] = t ; t += 1 # Set d i s c o v e r t ime
S . add (s) # We ’ ve v i s i t e d s
f o r u i n G[s] : # Exp l o r e n e i g hbo r s

i f u i n S : continue# Al r eady v i s i t e d . Sk ip
t = d f s (G, u , d , f , S , t) # Recur se ; update t imestamp

f [s] = t ; t += 1 # Set f i n i s h t ime
return t # Return t imestamp

>>> f={}
>>> d={}
>>> d f s (N, ’ a ’ , d , f)
12
>>> d
{ ’ a ’ : 0 , ’ c ’ : 2 , ’ b ’ : 1 , ’ e ’ : 4 , ’ d ’ : 3 , ’ f ’ : 9}
>>> f
{ ’ a ’ : 11 , ’ c ’ : 7 , ’ b ’ : 8 , ’ e ’ : 5 , ’ d ’ : 6 , ’ f ’ : 10}

19 / 25

Using depth-first timestamps for topological sorting

>>> f={}
>>> d={}
>>> d f s (DAG, ’ g ’ , d , f)
14
>>> t o p s o r t = [k f o r k , v i n s o r t e d (f . i t e r i t e m s () ,

key=lambda (k , v) : v)]
>>> t o p s o r t . r e v e r s e ()
>>> t o p s o r t
[’ g ’ , ’ a ’ , ’ b ’ , ’ c ’ , ’ f ’ , ’ e ’ , ’ d ’]

20 / 25

Exercise: DFS-Based Topological Sorting

21 / 25

Connected Components

A connected component of an undirected graph is a maximal set of
vertices such that there is a path between every pair of vertices

a

b

c

d

e

fg

Exercise: Explain in English how you could find all connected
components of a graph using breadth-first search.

24 / 25

Code to find connected components

def f i nd componen t s (G) :
v e r t i c e s = G. keys ()
u = v e r t i c e s [0] #p i c k s t a r t i n g v e r t e x
components =[] #l i s t o f components
S =s e t () #d i s c o v e r e d v e r t i c e s
wh i l e True :

cc = l i s t (b f s (G, u)) #do BFS from v e r t e x
S . update (cc) #update d i s c o v e r e d
components . append (cc)#update component l i s t
f o r v i n cc : #remove component ’ s v e r t i c e s

v e r t i c e s . remove (v)#from s e t to check
i f not v e r t i c e s : break
u = v e r t i c e s [0] #p i c k the nex t und i s c o v e r e d v e r t e x

r e t u r n components

>>> f i nd componen t s (G)
[[’ a ’ , ’ g ’ , ’ f ’] , [’ c ’ , ’ e ’ , ’ d ’] , [’ b ’]]

26 / 25

22

���������

Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.

�Node: pixel.

�Edge: two neighboring lime pixels.

�Blob: connected component of lime pixels.
recolor lime green blob to blue

24 / 25

23

���������

Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.

�Node: pixel.

�Edge: two neighboring lime pixels.

�Blob: connected component of lime pixels.
recolor lime green blob to blue

25 / 25

