Fashion Crimes: Trending-Term Exploitation on the Web

Tyler Moore¹, Nektarios Leontiadis², Nicolas Christin²

 $\begin{array}{c} {\sf Computer \ Science \ Department, \ Wellesley \ College^1} \\ {\sf CyLab, \ Carnegie \ Mellon \ University}^2 \end{array}$

ACM Conference on Computer & Communications Security Chicago, Illinois October 18, 2011

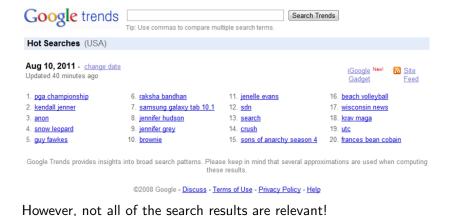
Outline

- 1 How trending search terms are abused
 - Monetizing traffic: malware or ads?
 - Research objectives
- Measuring trending-term abuse
 - Data collection methodology
 - Incidence of abuse
 - How search-term characteristics affect abuse prevalence
- 3 Economics of trending-term exploitation
 - Estimating the exposed population
 - Revenue analysis: ad abuse
 - Revenue analysis: malware
- What happens when search engines intervene?
 - Measuring the effect of Google's intervention
 - Cautionary tale on crackdowns

Outline

- 1 How trending search terms are abused
 - Monetizing traffic: malware or ads?
 - Research objectives
- Measuring trending-term abuse
 - Data collection methodology
 - Incidence of abuse
 - How search-term characteristics affect abuse prevalence
- 3 Economics of trending-term exploitation
 - Estimating the exposed population
 - Revenue analysis: ad abuse
 - Revenue analysis: malware
- What happens when search engines intervene?
 - Measuring the effect of Google's intervention
 - Cautionary tale on crackdowns

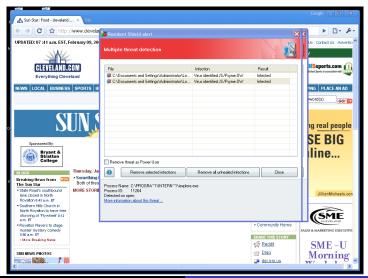
Search terms can be highly dynamic



イロト イ押ト イヨト イヨト

At best you may encounter ad-filled sites

At worst you may encounter malware



Research goals

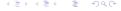
- Measure the prevalence of abuse in trending terms' search results relative to other terms
- Identify whether certain types of search terms are more susceptible to abuse and why
- Onstruct an economic model of revenue from malware and ads to understand the behavior of profit-minded adversaries
- Measure the impact of a search-engine crackdown on low-quality, "made for Adsense" (MFA) sites

Why worry about dodgy advertising?

- Legal crackdowns on the underground economy might tempt criminals to shift to more reliable income sources
- Online advertising is a logical target
 - Ad platforms lack the incentive to detect fraud, since detection directly reduces profit
 - Advertisers struggle to monitor for abuse due to lack of transparency
 - Criminals already profit from online advertising: botnets carry out click-fraud, spyware games affiliate-marketing programs

Related work

- Empirical investigations of the underground economy
 - Underground fora (Franklin et al. CCS 2006, Caballero et al. USENIX Security 2011)
 - Email spam (Kanich et al. CCS 2008, Levchenko et al. S&P 2011)
 - Phishing (Moore and Clayton eCrime 2007)
 - Online social networks (Grier et al. CCS 2010)
- Empirical investigations of web-based scams
 - Social engineering (Christin et al. CCS 2010)
 - Drive-by downloads (Provos et al. USENIX Security 2007)
 - Web spam to promote fake antivirus (Rajab et al. LEET 2010, Cova et al. RAID 2010, Stone-Gross et al. WEIS 2011)
 - Web spam to promote ads (Wang et al. WWW 2007, Moore and Edelman FC 2010)
- Empirical investigations of trending abuse
 - Uncovering trending abuse tactics (John et al. USENIX Security 2011, Lu et al. CCS 2011)
 - Cloaking measurement (Wang et al. CCS 2011)



Outline

- How trending search terms are abused
 - Monetizing traffic: malware or ads?
 - Research objectives
- Measuring trending-term abuse
 - Data collection methodology
 - Incidence of abuse
 - How search-term characteristics affect abuse prevalence
- 3 Economics of trending-term exploitation
 - Estimating the exposed population
 - Revenue analysis: ad abuse
 - Revenue analysis: malware
- 4 What happens when search engines intervene?
 - Measuring the effect of Google's intervention
 - Cautionary tale on crackdowns

Data collection methodology

- Construct a set of trending and control queries
 - Trending set: collect 20 Google Hot Trends hourly, and consider a term hot if it has appeared in last 72 hours
 - Control set: 495 persistently popular terms (most popular terms in 2010 for 27 categories according to Google)
- Issue queries across multiple search engines
 - Gather top results from Google, Yahoo, Twitter every 4 hours
 - Over 60 million search results and tweets collected
- Classify the search results as malicious or benign
 - Malware: Check each URL against Google's Safe Browsing API
 - *MFA*: Supervised machine-learning algorithm classifies websites appearing in results of more than 20 different trending terms

Total incidence of malware and MFA

		Terms			Results		
	Total	Infected	%	Total	Infected	%	
Malware							
Web Search							
Trending set	6 946	1 232	18	9.8M	7 889	.08	
Control set	495	123	25	16.8M	7 3 3 2	.04	
Twitter							
Trending set	1 950	46	2.4	466K	137	.03	
Control set	495	53	11	1M	139	.01	
MFA sites							
Web Search							
Trending set	19792	15 181	76.7	32.3M	954K	3.0	
Twitter							
Trending set	1 950	1833	94	466K	32 152	6.9	

More control terms include at least 1 infected result

		Terms			Results	
	Total	Infected	%	Total	Infected	%
Malware						
Web Search						
Trending set	6 946	1 232	18	9.8M	7 889	.08
Control set	495	123	25	16.8M	7 3 3 2	.04
Twitter						
Trending set	1 950	46	2.4	466K	137	.03
Control set	495	53	11	1M	139	.01
MFA sites						
Web Search						
Trending set	19792	15 181	76.7	32.3M	954K	3.0
Twitter						
Trending set	1 950	1833	94	466K	32 152	6.9

More trending results are infected

		Terms			Results		
	Total	Infected	%	Total	Infected	%	
Malware Web Search							
Trending set	6 946	1 232	18	9.8M	7 889	.08	
Control set	495	123	25	16.8M	7 3 3 2		
Twitter							
Trending set	1 950	46	2.4	466K	137	.03	
Control set	495	53	11	1M	139	.01	
MFA sites Web Search							
Trending set Twitter	19792	15 181	76.7	32.3M	954K	3.0	
Trending set	1 950	1833	94	466K	32 152	6.9	

MFA sites much more pervasive than malware

		Terms			Results	
	Total	Infected	%	Total	Infected	%
Malware						
Web Search						
Trending set	6 946	1 232	18	9.8M	7 889	.08
Control set	495	123	25	16.8M	7 3 3 2	.04
Twitter						
Trending set	1 950	46	2.4	466K	137	.03
Control set	495	53	11	1M	139	.01
MFA sites						
Web Search						
Trending set	19792	15 181	76.7	32.3M	954K	3.0
Twitter						
Trending set	1 950	1833	94	466K	32 152	6.9

Malware incidence at any given point in time

- By viewing the exposure to malware through search at a single point in time, we find that the risk can be substantial
- Trending terms are more likely to be infected
- Trending terms are more likely to be undetected

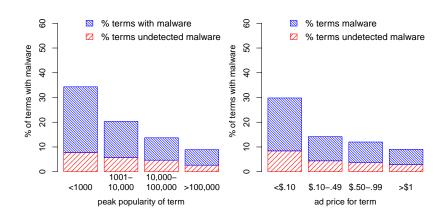
	Ter	ms	Results
	#	%	#
Trending term	ıs – we	b sear	ch
detected	12.8	4.4	14.8
top 10	2.9	1.0	3.2
undetected	6.2	2.1	7.6
top 10	1.2	0.4	1.5
Control terms	– web	searc	h
detected	9.5	1.9	14.1
top 10	3.1	0.6	3.9
undetected	1.0	0.2	1.0
top 10	0.1	0.0	0.1

Does abuse incidence vary by term category?

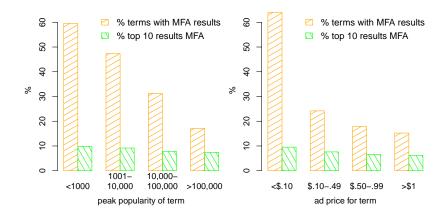
- News, Sports and Local account for over half of all terms
- We found no statistically significant difference in malware incidence across categories
- Some categories were more disposed to MFA (Food&Drink, Reference, Science, Shopping)
- Some categories were less disposed to MFA (e.g., Entertainment, Local, Health)

Category			Malware		MFA	
name	%	CPC	% terms	% terms	$\%\ top\ 10$	coef.
Arts & Humanities	2.7	\$0.44	20.1	40.6	6.8	
Automotive	1.3	\$0.67	16.0	29.2	5.2	-0.0062
Beauty & Personal Care	0.8	\$0.76	19.6	32.5	6.9	
Business	0.4	\$0.87	7.4	32.9	6.9	
Computers & Electronics	2.4	\$0.61	14.5	31.7	5.9	
Entertainment	30.6	\$0.34	18.6	41.0	6.4	-0.0043
Finance & Insurance	1.4	\$1.26	20.2	30.4	5.6	
Food & Drink	2.9	\$0.43	17.1	49.5	7.9	+0.0105
Games	2.3	\$0.32	13.4	30.0	5.6	-0.0073
Health	2.5	\$0.85	14.1	27.6	5.9	-0.0046
Home & Garden	0.5	\$0.76	7.1	29.7	7.2	
Industries	1.6	\$0.50	26.1	38.6	6.6	-0.0072
Internet	0.7	\$0.49	7.7	43.7	6.0	
Lifestyles	4.5	\$0.33	25.4	45.8	6.5	
Local	11.0	\$0.51	21.8	39.2	6.9	-0.0027
News & Current Events	3.6	\$0.39	19.7	45.0	7.0	
Photo & Video	0.2	\$0.59	0.0	21.9	6.4	
Real Estate	0.2	\$1.02	6.2	34.2	6.5	
Recreation	1.0	\$0.43	13.7	43.5	6.5	
Reference	1.4	\$0.43	14.5	55.4	8.7	+0.0203
Science	1.4	\$0.40	16.0	44.9	9.1	+0.0095
Shopping	3.2	\$0.56	11.6	43.7	8.8	+0.0106
Social Networks	0.5	\$0.19	27.8	59.1	6.4	
Society	5.1	\$0.62	15.2	33.7	5.6	-0.0085
Sports	15.4	\$0.38	20.7	44.9	6.9	-0.0044
Telecommunications	0.8	\$0.91	10.9	36.4	4.6	
Travel	1.7	\$0.88	10.1	29.3	6.4	
Average (category)	3.7	\$0.59	18.4	38.3	6.6	

How a term's popularity and ad price affect malware



How a term's popularity and ad price affect MFA incidence



Outline

- How trending search terms are abused
 - Monetizing traffic: malware or ads?
 - Research objectives
- 2 Measuring trending-term abuse
 - Data collection methodology
 - Incidence of abuse
 - How search-term characteristics affect abuse prevalence
- 3 Economics of trending-term exploitation
 - Estimating the exposed population
 - Revenue analysis: ad abuse
 - Revenue analysis: malware
- What happens when search engines intervene?
 - Measuring the effect of Google's intervention
 - Cautionary tale on crackdowns

Estimated visits to MFA and malware sites

 \bullet $V\colon \#$ Visits to a website w from searching for s for time period t $_{\backslash}$

$$V(w, s, t) = C \left(\frac{\text{Rank}(w, s)}{1} \right) \cdot \frac{\text{Pop}(s)}{1} \cdot \frac{4}{30 \times 24} \times t$$

- Click probability
- ullet Website w position for term s
- ullet Monthly peak popularity of term s

Estimated visits to MFA and malware sites

On 24 Sep 2010 5:00, a search for "dream act 2010 status" (72 600 searches per month), the following URL appears as the third result in Google:

http://www.eworldpost.com/dream-act-2010-status-17168.html

$$V(w,s,t) = C(\operatorname{Rank}(w,s)) \cdot \operatorname{\mathsf{Pop}}(s) \cdot \frac{4}{30 \times 24} \times t$$

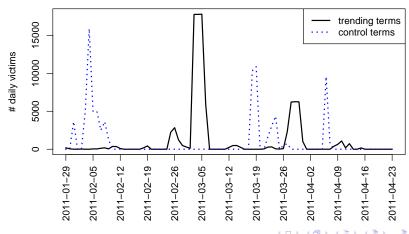
$$V(\texttt{eworldpost.com}, \texttt{"dream act 2010 status",1}) = \textcolor{red}{C} \textcolor{red}{(3)} \cdot \textcolor{red}{72\,600} \cdot \frac{4}{30 \times 24} \times 10^{-10} \times 10^{-10}$$

 $V({\tt eworldpost.com}, {\tt `dream act 2010 status''}, {\tt 1}) \ = 44 \ {\tt visits}$

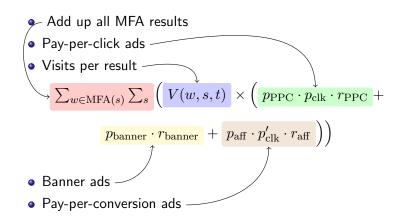
Estimated visits to MFA and malware sites

		# Visito	rs
	Total	Period	Monthly Rate
MFA	39 274 200	275 days	4 284 458
Malware (tren	iding set)		
detected	454 198	88 days	154 840
undetected	143 662	88 days	48 975
Malware (con	trol set)		
detected	12 825 332	88 days	4 372 272
undetected	83615	88 days	28 505

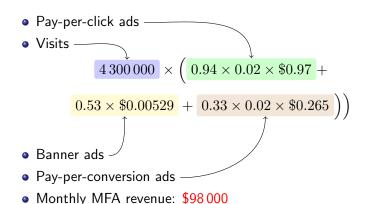
Estimated daily victims to malware in search results



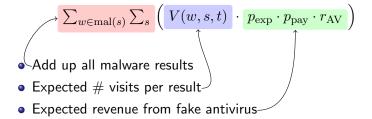
MFA Revenue Analysis



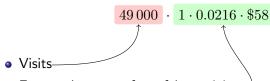
MFA revenue for one month



Malware revenue analysis



Malware revenue for one month



- Expected revenue from fake antivirus (Source: Stone-Gross et al. WEIS 2011)
- Monthly malware revenue: \$61 000

Outline

- How trending search terms are abused
 - Monetizing traffic: malware or ads?
 - Research objectives
- 2 Measuring trending-term abuse
 - Data collection methodology
 - Incidence of abuse
 - How search-term characteristics affect abuse prevalence
- 3 Economics of trending-term exploitation
 - Estimating the exposed population
 - Revenue analysis: ad abuse
 - Revenue analysis: malware
- 4 What happens when search engines intervene?
 - Measuring the effect of Google's intervention
 - Cautionary tale on crackdowns

Insights from Googlers into our products, technology, and the Google culture.

Finding more high-quality sites in search

2/24/2011 06:50:00 PM

Our goal is simple: to give people the most relevant answers to their queries as quickly as possible. This requires constant tuning of our algorithms, as new content—both good and bad—comes online all the time

Many of the changes we make are so subtle that very few people notice them. But in the last day or so we launched a pretty big algorithmic improvement to our ranking—a change that noticeably impacts 11.8% of our queries—and we wanted to let people know what's going on. This update is designed to reduce rankings for low-quality sites—sites which are low-value add for users, copy content from other websites or sites that are just not very useful. At the same time, it will provide better rankings for high-quality sites—sites with original content and information such as research, in-depth reports, thouchful analysis and so on.

We can't make a major improvement without affecting rankings for many sites. It has to be that some sites will go up and some will go down. Google depends on the high-quality content created by wonderful websites around the world, and we do have a responsibility to encourage a healthy web ecosystem. Therefore, it is important for high-quality sites to be rewarded, and that's exactly what this change does.

It's worth noting that this update does not rely on the feedback we've received from the Personal Blocklist Chrome extension, which we launched last week. However, we did compare the Blocklist data we gathered with the sites identified by our algorithm, and we were very pleased that the preferences our users expressed by using the extension are well represented. If you take the top several dozen or so most-blocked domains from the Chrome extension, then this algorithmic change addresses 84% of them, which is strong independent confirmation of the user benefits.

Search This Blog

Search

Follow us on Twitter

Site Feed

+ Google

578K readers

Make Google your

Blog Archive

Blog Archive ▼

Labels

accessibility (30)

acquisition (19)

ads (101) Africa (17)

Android (27)

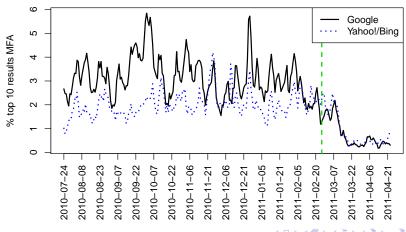
apps (370)

April 1 (4) Asia (31)

books + book search (44)

crisis response (24)

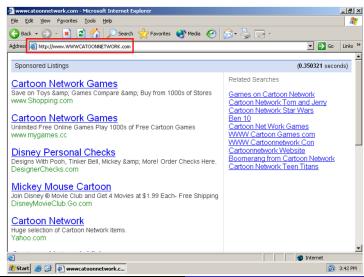
Measuring the effect of Google's intervention



Implications of Google's intervention for search engines

	Monthly MFA visits				
	Pre-intervention	% change			
Google search	3 364 402	1 788 480	-47%		
Yahoo!/Bing search	1 302 314	1 448 058	+11%		
Total	4 666 716	3 236 538	-31%		

Cautionary tale on crackdowns: typosquatting



1 278 cartoonnetwork.com typos, including...

cartoonnetsork.com cartoonntewrk com cargoonnetwork.com cartoonnetwkor.com cartoonetgork.com cartoomnetwoork.com caretoonetwork.com cartoonnetwokr.com cartoonnetworkcom com carfoonnetwork.com cartoopnetwork.com cagrtoonetwork.com cartoonntwoork.com cartoonetwoirk com cartoonnnetwrk.com cartoonhetwork com cartoonnetook com catoonnettwork.com cartoonnetwork com cartoconnetwrk.com cartoonneywork com cartoonetworg.com crattonnetwork.com cartoonnerwort com cartoonnetwar.com cattoonnetwok com cartoolnnetwork.com cartoonnedword com carttoonnetwook.com

cagtoonnetwork. cartoinnetwork.com cartoonnetlork.com carttoonnnetwork.com catoonnnetwork.com cartoonnetgork.com caryoonetwork.com cartoonetwoork com cartoonnetwokl.com nartoonnetwork com cartoonnotwork.com cartoonnetwogk.com cartoonneework.com catoonneetwork.com cartoonznetwork com cartoommetwork.com fcartoonnetwork com cartoonnetkwork com cartooOnnetwork.com cartoonetwrk com cartoonnetbwork.com caroconnetwork com cartoonetworl.com cartoonnewtokr.com cartoonnerwork com cartoonnetwak.com cartoonnetwwork com cartoonetworkcom.com cartoonnedwork com cartoonnetwowrk.com

cartolnnetwork.com cartoonnetowok com cartoonnwetwork.com cartooconnetwork.com cartoonneetwort com cartoconetwork.com cartoonnetwoer com cartoonnetwoke.com cartoonnstwork com cartoonnnetwok.com cartoonetwaork.com cartppnnetwork.com crattoonnetwork.com cartoobnetwork com cartoonnetwart.com catoonnetwerk com cartonnetwokr com cacrtoonnetwork.com cartoonnewark com caetooonetwork.com dartoonnetwork com cartoonetworj.com carntoonnetwork.com cartoonnerworl com cartoonnekwork.com cartoonnetgor.com casrtoonetwork.com www.carttoonnetwork.com cartoonetwqork.com

cartoonnftwork.com crtonnetwork com cartoonetrwork.com caconnetwork.com cartoonneetwork com cantoonnetwork.com carttoonnetwerk com cartoownnetwork.com cartoounnetwork com cartoonnnetwor.com cartoonntewrok.com cartoonnetmwork.com cartoonnetweark.com catoonnework com www.cartonetwork.com artoonnetwor com carltonnetwork com cartoonnetwoorkl.com cartoonnetwoirk com cartoonknetwork.com certoonnetwork com cartoonetwork.com caretoonnetwork.com cartoonnetfork com cartooknetwork.com cartoonnetwowk com cartoonnetswork.com cartoonerwork com

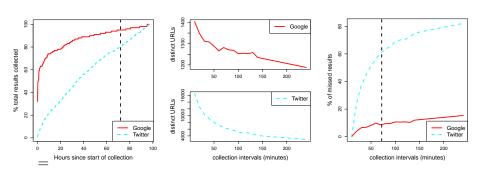
crartoonnetwork.com

cartoonneywork.com cartoonnegwork.com cartoonnetwodrk.com cartonbetwork.com catoonnetwrok com cargoonnetworm.com chartoonnetwork com cartoobetwork.com cartoonework com cartonnetwortk.com cartoonetwoek.com cartoconework com carttooonetwork.com cartiinnetwork com cartoonnttwork.com cartoonnetwock com cartoonetowrk com cartoonedtwork.com cartoknnetwork com catcomnetwork.com cartoonetword com cartoonetwort.com cartoconnetwoork.com cartoonnetttwork com cartoonegwork.com www.catoonetwork.com cartoonnedwort.com cattoonnetwark com =czrtoonnetwork.com Q Q

Conclusions

- Trending terms are successfully exploited by miscreants more often than consistently popular terms
- Pointing users to malware and ad-filled sites yields similar revenue levels
- Either way, miscreants are only modestly successful
- Google's quality crackdown worked, but beware unintended consequences for the attraction of malware to the bad guys
- For more, see http://cs.wellesley.edu/~tmoore/

Calibration tests balance comprehensiveness and efficiency



Regression model for malware prevalence

$$\mathsf{logit}(p_{\mathsf{HasMalware}}) = \beta + \mathsf{AdPrice}x_1 + \log_2(\mathsf{Popularity})x_2$$

	coef.	odds	Std. Err.	Significance
AdPrice	-0.509	.601	0.091	p < 0.001
$\log_2(Popularity)$	-0.117	0.889	0.012	p < 0.001

Regression model for MFA prevalence

 $\mathsf{FracTop10MFA} = \beta + \mathsf{AdPrice}x_1 + \log_2(\mathsf{Popularity})x_2 + \mathsf{Category}x_3 \; .$

	coef.	Std. Err.	Significance			
AdPrice	-0.0091	0.091	p < 0.001			
$\log_2(Popularity)$	-0.004	0.012	p < 0.001			
Coefficients for category variables in earlier Table, R^2 : 0.1373						